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Abstract

Automatic tools for finding software errors require a set of

specifications before they can check code: if they do not know

what to check, they cannot find bugs. This paper presents a

novel framework based on factor graphs for automatically in-

ferring specifications directly from programs. The key strength

of the approach is that it can incorporate many disparate

sources of evidence, allowing us to squeeze significantly more

information from our observations than previously published

techniques.

We illustrate the strengths of our approach by applying it

to the problem of inferring what functions in C programs al-

locate and release resources. We evaluated its effectiveness on

five codebases: SDL, OpenSSH, GIMP, and the OS kernels for

Linux and Mac OS X (XNU). For each codebase, starting with

zero initially provided annotations, we observed an inferred an-

notation accuracy of 80-90%, with often near perfect accuracy

for functions called as little as five times. Many of the inferred

allocator and deallocator functions are functions for which we

both lack the implementation and are rarely called — in some

cases functions with at most one or two callsites. Finally, with

the inferred annotations we quickly found both missing and in-

correct properties in a specification used by a commercial static

bug-finding tool.

1 Introduction

Many effective tools exist for finding software errors [4,

5,8,15,18,28,33]. While different in many respects, they

are identical in one: if they do not know what to check,

they cannot find bugs. In general, tools require specifica-

tions that document what a program should do in order

for the tool to discern good program behavior from bad.

Undetected errors due to missing specifications are a se-

rious form of false negatives that plague sound and un-

sound bug-finding tools alike. From our own experience

with developing such tools, we believe that legions of

bugs remain undetected in systems previously “vetted”

by checking tools simply because they lack the required

specifications, and not because tools lack the necessary

analysis precision.

Furthermore, checking tools generally operate with-

out safety nets. There is no mechanism to discover when

bugs in the checking tool lead to missed errors in checked

code. Analysis bugs are a source of false negatives; while

an unsound tool may have false negatives by design, even

a sound tool can have false negatives due to implementa-

tion bugs. In our experience this is a serious concern: if

an analysis bug does not cause a false positive, the only

way to catch it is by comparison against regression runs.

The result of all these factors is that checking tools

miss many bugs they could catch. Unfortunately, acquir-

ing accurate specifications can be daunting at best. Even

with state-of-the-art annotation systems, the manual la-

bor needed to specify high-level invariant properties for

large programs can be overwhelming [12, 35]. Further,

in large, evolving codebases with many developers, in-

terfaces may change rapidly as functions are added and

removed. This churn exacerbates the problem of keeping

a specification, if there is one, current.

Fortunately, there are many sources of knowledge, in-

tuitions, and domain-specific observations that can be au-

tomatically leveraged to help infer specifications from

programs directly. First and foremost, the behavior of

programs is well-structured, with recognizable patterns

of behavior implying high-level roles for the objects in

a program. For example, functions that allocate and re-

lease resources (such as file handles and memory) vary

widely in their implementations, but their interfaces are

used nearly identically. In essence, the behavior of a pro-

gram reflects what the programmer intended it to do, and

the more we observe that one or more objects appear to

interact in a recognizable role, the more we believe that

role reflects their true purpose. More plainly, the more

something behaves like an X the more we believe it is

an X . Thus, leveraging such information has the desired

property that the amount of evidence garnered about a

program’s specification grows in the amount of code an-

alyzed. In addition, we often have a volume of valuable,

non-numeric ad hoc information such as domain-specific

naming conventions (e.g., a function name containing the

word “alloc” often implies the function is an allocator).

This paper presents a novel, scalable, and customiz-

able framework for automatically inferring specifications

from programs. The specifications we infer come in the

form of annotations, which are able to describe many

kinds of important program properties. The key strength

of our approach is that it tightly binds together many dis-

parate sources of evidence. The result is that any in-

formation about one object becomes indirect informa-

tion about related objects, allowing us to squeeze sig-



nificantly more information from our observations than

previously published approaches. Our framework can in-

corporate many sources of information: analysis results

from bug-finding tools, ad hoc knowledge, and already

known annotations (when available). Moreover, because

the technique is built upon a probabilistic model called a

factor graph [21,36], it is fully capable of fusing multiple

sources of information to infer specifications while han-

dling the inherent uncertainty in our information sources

and the often noisy relationships between the properties

we wish to infer. Further, inferred annotations can be im-

mediately employed to effectively find bugs even before

the annotations are inspected by a user.

This last feature makes our framework pragmatic even

for rapidly evolving codebases: the process of inferring

annotations and using those annotations to check code

with automated tools can be integrated into a nightly re-

gression run. In the process of the daily inspection of

bug reports generated by the nightly run, some of the in-

ferred annotations will be inspected by a user. These now

known annotations can subsequently be exploited on the

next nightly regression to better infer the remaining unin-

spected annotations. Thus, our framework incrementally

accrues knowledge about a project without a huge initial

investment of user labor.

This paper makes the following contributions.

1. We present Annotation Factor Graphs (AFGs), a

group of probabilistic graphical models that we have

architected specifically for inferring annotations.

2. We illustrate how information from program analysis

as well as different kinds of ad hoc knowledge can be

readily incorporated into an AFG.

3. We reduce the process of inferring annotations with

an AFG to factor graph inference and describe impor-

tant optimizations specific to incorporating informa-

tion from static program analysis into an AFG.

4. We provide a thorough evaluation of the technique

using the example of inferring resource management

functions, and illustrate how our technique scales

to large codebases with high accuracy. Further, we

show that with our results we have found both miss-

ing and incorrect properties in a specification used by

a commercial bug-finding tool (Coverity Prevent [7]).

Section 2 presents a complete example of inferring spec-

ifications from a small code fragment, which introduces

the key ideas of our approach. Section 3 uses the exam-

ple to lay the theoretical foundations, which Section 4

further formalizes. Section 5 refines the approach and

shows more advanced AFG modeling techniques. Sec-

tion 6 discusses the computational mechanics of our in-

ference technique. We evaluate the effectiveness of our

approach in Section 7, discuss related work in Section 8,

and then conclude.

FILE * fp = fopen("myfile.txt","r");
fread( buffer, n, 1000, fp );
fclose( fp );

Figure 1: Simple example involving a C file handle: fopen “allo-

cates” the handle, fread uses it, and fclose releases it.

2 Motivating Example

We now present a complete example of inferring specifi-

cations from a small code fragment. This example, along

with the solution presented in the next section, serves to

introduce many of the core ideas of our technique.

2.1 Problem: Inferring Ownership Roles

Application and systems code manages a myriad of re-

sources such as allocated heap objects, file handles, and

database connections. Mismanagement of resources can

lead to bugs such as resource leaks and use-after-release

errors. Although tools exist to find such bugs [17,18,28,

32], all require a list of functions that can allocate and

release resources (allocators and deallocators). Unfortu-

nately, systems code often employs non-standard APIs to

manage resources, causing tools to miss bugs.

A more general concept that subsumes knowing allo-

cation and deallocation functions is knowing what func-

tions return or claim ownership of a resource. Many C

programs use the ownership idiom: a resource has at any

time exactly one owning pointer, which must release the

resource. Ownership can be transferred from a pointer

by storing it into a data structure or by passing it to a

function that claims it. A function that returns an owning

pointer has the annotation ro (returns ownership) asso-

ciated with its interface. A function that claims a pointer

passed as an argument has the property co (claims own-

ership) associated with the corresponding formal param-

eter. In this model, allocators are ro functions, while

deallocators are co functions.

Many ro functions have a contract similar to an alloca-

tor, but do not directly allocate resources. For example, a

function that dequeues an object from a linked list and re-

turns it to the caller. Once the object is removed from the

list, the caller must ensure the object is fully processed.

A similar narrative applies to co functions.

Consider the task of inferring what functions in a pro-

gram return and claim ownership of resources. For ex-

ample, assume we are given the code fragment in Fig-

ure 1 and are asked to determine if fopen is an ro and if

either fread or fclose are co’s. Without prior knowl-

edge about these functions, what can we conclude by

looking at this fragment alone?

While we cannot reach a definitive conclusion, simple

intuition renders some possibilities more likely than oth-

ers. Because programs generally behave correctly, a per-

son might first make the assumption that the code frag-

ment is likely to be bug-free. This assumption elevates
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Figure 2: DFA summarizing basic ownership rules. A pointer returned

from a function call enters either the Owned or ¬Owned state de-

pending on whether the called function has the property ro or ¬ro re-

spectively. Function calls involving the pointer cause the DFA to tran-

sition states based on the co or ¬co property associated with the called

function. An “end-of-path” indicates no further uses of the pointer

within the function. The two final states for the DFA indicate correct

(OK) or incorrect use of the pointer (Bug).

the likelihood of two conclusions over all others.

First, fopen may be an ro, fread a function that uses

fp but does not claim ownership of the resource (¬co),

and fclose a co. For this case, the code fragment can

be logically rewritten as:

fp = ro(); ¬co(fp); co(fp)

This conclusion follows if we assume the code fragment

is correct. If fopen is an ro, then this assignment is

the only one to all three functions that does not induce a

bug. To avoid a resource-leak, either fread or fclose

must be a co. To avoid a use-after-release error, however,

fread cannot be a co. This leaves fclose being a co.

Here we have assumed that an owned pointer cannot

be used after being claimed. This strict interpretation of

the ownership idiom assumes that all co’s are dealloca-

tors. For now, the correctness rules for ownership that

we use are summarized by the DFA in Figure 2, and we

discuss refinements in Section 5.1

Continuing, the second likely assignment of owner-

ship roles to these functions is that fopen is an ¬ro, with

both fread and fclose as ¬co’s:

fp = ¬ro(); ¬co(fp); ¬co(fp);

We reach this conclusion using similar reasoning as be-

fore. If fopen is an ¬ro, we no longer have the opportu-

nity to leak an allocated resource, but as Figure 2 shows,

it is now a bug to pass fp to a co.

Consequently, from simple reasoning we can infer

much about these functions. Note that we are not cer-

tain of anything; we only believe that some conclusions

are more likely than others. Further, we may be able to

infer more about these functions by incorporating addi-

tional intuitions and knowledge. In the next section we

discuss how to precisely formulate such reasoning.

3 The Big Picture

This section gives a crash course in our inference ap-

proach, tying it to the example just presented. By its end,

the reader will have a basic arsenal for inferring annota-

tions, which the next sections extend.

Our goal is to provide a framework (a probabilistic

model) that (1) allows users to easily express every in-

tuition and domain-specific observation they have that is

useful for inferring annotations and then (2) reduces such

knowledge in a sound way to meaningful probabilities.

In the process, the framework squeezes out all available

information about the annotations we are inferring.

The inference framework must solve two common

challenges. First, it must robustly handle noise. Other-

wise its brittleness will prevent the exploitation of many

observations that are only “often” true rather than always

true (e.g., an observation that an annotation obeys a fea-

ture 51% of the time). Second, it must soundly combine

uncertain information. Treated independently, a fact of

which we are only partially certain is only marginally

useful. However, aggregated with other sources of

knowledge, one fact can be the missing link in a chain

of evidence we would not otherwise be able to exploit.

Our annotation inference has three steps:

1. Define the set of possible annotations to infer.

2. Model domain-specific knowledge and intuitions in

our probabilistic model.

3. Compute annotation probabilities using the model.

These probabilities are then used to rank, from most-

to-least probable: entire specifications, individual an-

notations, or errors.

We now apply these three steps to our motivating ex-

ample. In general, annotations are implicitly defined by a

correctness property that we wish to check in a program;

we briefly describe it for our example (§ 3.1). We then

describe the fundamental mechanics of our probabilistic

model (§ 3.2), and how to model two basic properties:

(1) the fact that the more something behaves like an X

the more likely it is an X (§ 3.3) and (2) domain-specific

prior beliefs (§ 3.4). We finish the section by computing

the probabilities for the annotations in our example.

3.1 Defining the Annotations to Infer

We use annotation variables to denote the program ob-

jects to which annotations bind. The example has three

such variables: fopen:ret , fread:4 and fclose:1 . The vari-

able fopen:ret corresponds to the possible annotations for

the return value of fopen, and has the domain {ro,¬ro}.

The variables fread:4 and fclose:1 (where “:i” denotes

the ith formal parameter) have the domain {co,¬co}.

We have 23 = 8 combinations of values for these vari-

ables, and each represents a joint specification of the

roles of all three functions. (For this paper, an annota-

tion and its negation are mutually exclusive.) We denote

the set of annotation variables as A. In our example,

A = {fopen:ret , fread:4 , fclose:1}. Further, the notation



ANNOTATIONS FACTOR VALUES FACTOR PRODUCT PROBABILITY

fopen:ret fread:4 fclose:1 DFA f〈check〉 f〈ro〉(fopen:ret) f〈co〉(fread:4) f〈co〉(fclose:1)
Q

f 1

Z

Q

f

ro ¬co co 4 0.9 0.8 0.7 0.3 0.151 0.483

¬ro ¬co ¬co 4 0.9 0.2 0.7 0.7 0.088 0.282

ro ¬co ¬co 8 0.1 0.8 0.7 0.7 0.039 0.125

ro co ¬co 8 0.1 0.8 0.3 0.7 0.017 0.054

ro co co 8 0.1 0.8 0.3 0.3 0.007 0.023

¬ro ¬co co 8 0.1 0.2 0.7 0.3 0.004 0.013

¬ro co ¬co 8 0.1 0.2 0.3 0.7 0.004 0.013

¬ro co co 8 0.1 0.2 0.3 0.3 0.002 0.006

Table 1: Table depicting intermediate values used to compute P(fopen:ret , fread:4 , fclose:1 ). Specifications are sorted by their probabilities. The

value Z is a normalizing constant computed by summing the column
Q

f . By summing the values in the last column when fopen:ret= ro we

compute P(fopen:ret = ro) ≈ 0.7. The marginal probabilities P(fread:4 = ¬co) ≈ 0.9 and P(fclose:1 = co) ≈ 0.52 are similarly computed.

A = a means that a is some concrete assignment of

values to all the variables in A. Thus a represents one

possible complete specification, which in our example

specifies ownership roles for all three functions.

Table 1 lists all possible specifications for Figure 1,

and displays the intermediate values used to compute

probabilities for each specification. We use this table

throughout the remainder of this section. The “DFA” col-

umn indicates, for each specification, the final state of the

DFA from Figure 2 when applied to the code example.

3.2 Modeling Beliefs for Annotations

The rest of the section shows how to express domain-

insights in our inference framework in terms of user-

defined mathematical functions, called factors. The

framework uses these factors to compute annotation

probabilities, e.g. the probability P (fopen:ret = ro) that

the return value of fopen has the annotation ro.

Factors are relations mapping the possible values of

one or more annotation variables to non-negative real

numbers. More precisely, each factor fi is a map from

the possible values of a set of variables Ai (Ai ⊆ A)

to [0,∞). Factors “score” an assignment of values to a

group of related annotation variables, with higher values

indicating more belief in an assignment. Although not

required, for many factors the mapped values we specify

are probabilities (i.e. sum to 1) because probabilities are

intuitive to specify by hand.

Suppose we know that functions in a codebase that re-

turn a value of type FILE* have a higher chance of re-

turning ownership (ro). We can express this tendency

using a factor that, given the annotation label for the re-

turn value of a function with a FILE* return type, returns

slightly higher weights for ro annotations than ¬ro an-

notations. For example, making fFILE*
(fopen:ret = ro) =

0.51 and fFILE*
(fopen:ret = ¬ro) = 0.49. Note that the

magnitude of the values is not important, but rather their

relative odds. We could have used 51 and 49 instead,

implying an odds of 51:49 to prefer ro over ¬ro annota-

tions. While trivial, this example illustrates a couple of

recurrent themes. First, the observations we want to ex-

ploit for inference are often tendencies and not laws — as

long as these tendencies are right more often than wrong,

they convey useful information. The ratio that their asso-

ciated factor returns reflects the reliability of a tendency

— big ratios for very reliable tendencies, smaller ratios

for mildly reliable ones. Second, factors work well in

our domain since (1) they let the user express any com-

putable intuition in terms of a custom function and (2)

inference intuitions naturally reduce to preferences over

the possible values for different groups of annotation

variables. Factors thus provide a way to reduce disparate

observations to a common currency.

Once we represent individual beliefs with factors, we

combine a group of factors {fj}
J
j=1 into a single prob-

ability model by multiplying their values together and

normalizing:

P(A) =
1

Z

∏

fi∈{fj}J
j=1

fi(Ai) (1)

The normalizing constant Z causes the scores to define

a probability distribution over the values of A, which di-

rectly translates into a distribution over specifications.

One way to view Equation 1 is as a specific case of

Hinton’s concept of a Product of Experts [19]. From

this view, each factor represents an “expert” with some

specific knowledge which serves to constrain different

dimensions in a high-dimensional space. The product of

these experts will then constrain all of the dimensions. In

this case, the dimensions represent the space of possible

specifications, and the most probable specifications are

those that most “satisfy” the combined set of constraints.

Note that because factors can share inputs their values

are not independent; such correlation gives the model

much expressive power. As stated previously (§ 2.1),

annotations may be correlated (e.g., if fopen is an ro,

then fclose is likely a co). We capture this correlation

by having the probabilistic model represent a probability

distribution P(A) over the values of all the annotation

variables A.

The simplicity of Equation 1 is deceptive. It is trivial

to define an ad hoc scoring function that in a deep sense

means nothing. This function is not one of those. It sub-

sumes the expressive power of both Bayesian networks

and Markov Random Fields, two widely used methods



for modeling complex probabilistic domains, because

both can be directly mapped to it. In our experience it is

also simpler and easier to reason about. We defer discus-

sion of its mathematical foundation (see [36]) — but for

our purposes, it has the charm of being understandable,

general enough to express a variety of inference tricks,

and powerful enough to make them mean something.

We now show how to use factors by defining two com-

mon types of factors for our example: behavioral signa-

tures and prior beliefs.

3.3 Behavioral Signatures

“Behavior is the mirror in which everyone shows their image.”

— Johann Wolfgang von Goethe

In general, the more something behaves like an X, the

more probable it is an X. In our context, programmers

often use program objects that should have a given an-

notation in idiomatic ways. Such behavioral signatures

provide a good source of data that we can automatically

extract from code (e.g., by using static analysis), which

gives a nice mechanical way to get large data samples.

As with any statistical analysis, the more data we have

the more information we can extract.

The most common behavioral signature for any anno-

tation is that programs generally behave correctly and

that errors are rare. Thus, correct annotations (typi-

cally!) produce fewer errors than incorrect ones. We

measure how much a behavioral signature is exhibited in

a program by using a behavioral test. A behavioral test

works as follows: for every location in a program where

a behavioral signature may apply, we conduct a check

to see if a given set of annotations matches that signa-

ture. Because the behavior may involve reasoning about

the semantics of different execution paths in the program

(either intra- or inter-procedurally), this check is imple-

mented using a static analysis checker.

The checker we use in this paper is an intra-procedural

static analysis that simulates the DFA in Figure 2 on

paths through functions stemming from callsites where

a pointer is returned. In principle, however, checks can

employ program analysis of arbitrary complexity to im-

plement a behavioral test, or even be done with dynamic

analysis. The output of the checker indicates whether or

not the annotation assignment ai to the set of annotation

variables Ai matched with one (or more) behavioral sig-

natures. We can capture this belief for our example with

a single check factor, f〈check〉(fopen:ret , fread:4 , fclose:1):

f〈check〉(...) =

{

θ〈ok〉 : if DFA = OK

θ〈bug〉 : if DFA = Bug

This factor weighs assignments to fopen:ret , fread:4 , and

fclose:1 that induce bugs against those that do not with

a ratio of θ〈bug〉 to θ〈ok〉. For instance, suppose we be-

lieve that any random location in a program will have a

1. FILE * fp1 = fopen( "myfile.txt", "r" );
2. FILE * fp2 = fdopen( fd, "w" );
3. fread( buffer, n, 1, fp1 );
4. fwrite( buffer, n, 1, fp2 );
5. fclose( fp1 );
6. fclose( fp2 );

Figure 3: Code example that would produce two distinct checks, one

for fp1 and fp2 respectively. Observe that both fopen and fdopen

return ownership of a resource that must be claimed by fclose.

bug 10% of the time. This can be reflected in f〈check〉 by

setting θ〈bug〉 = 0.1 and θ〈ok〉 = 0.9. These values need

only be rough guesses to reflect that we prefer annota-

tions that imply few bugs.

Check factors easily correlate annotation variables.

In this case, f〈check〉 correlates fopen:ret , fread:4 , and

fclose:1 since its value depends on them. In general there

will be one “f〈check〉” for each location in the program

where a distinct bug could occur. Figure 3 gives an exam-

ple with two callsites where two file handles are acquired

by calling fopen and fdopen respectively. These two

cases constitute separate checks (represented by two fac-

tors) based on the reasoning that the programmer made

a distinct decision in both cases in how the returned han-

dles were used. Observe in this case that the variable

fclose:1 is associated with two checks, and consequently

serves as input to two check factors. Thus the more a

function is used the more evidence we acquire about the

function’s behavior through additional checks.

3.4 Prior Beliefs: Small Sample Inference

As in any data analysis task, the less data we have the

harder inference becomes. In our domain, while a large

number of callsites are due to a few functions, a large

number of functions have few callsites. As already dis-

cussed, AFGs partially counter this problem by explic-

itly relating different functions together, thus information

from one annotation can flow and influence others. An

additional approach that cleanly melds into our frame-

work is the use of priors to indicate initial preferences

(biases). We attach one prior factor to each annotation

variable to bias its value. Having one prior factor per an-

notation variable, rather than per callsite, means it pro-

vides a constant amount of influence that can be gradu-

ally overwhelmed as we acquire more evidence.

For example, a completely useless specification for a

codebase is that all functions have either ¬ro or ¬co
annotations. This specification generates no bugs since

nothing is ever allocated or released, but is vacuous be-

cause we are interested in identifying allocators and deal-

locators. One counter to this problem (we discuss an ad-

ditional method later in § 5.1) is to encode a slight bias

towards specifications with ro’s and co’s. We encode this

bias with two sets of factors. The first is to bias towards



ro annotations with the factor f〈ro〉:

f〈ro〉(X) =

{

θ〈ro〉 : if X = ro
θ〈¬ro〉 : if X = ¬ro

For instance, θ〈ro〉 = 0.8 and θ〈¬ro〉 = 0.2 means that

we prefer ro to ¬ro annotations with an odds of 8:2. Our

example has one such factor attached to fopen:ret . Values

of this factor for different specifications are depicted in

Table 1.

The addition of f〈ro〉(fopen:ret) biases us towards ro
annotations, but may cause us to be overly aggressive in

annotating some formal parameters as co in order to min-

imize the number of bugs flagged by the checker (thereby

maximizing the value of the f〈check〉 factors). To bias

against co annotations, we define f〈co〉 in an analogous

manner to f〈ro〉. We set θ〈co〉 = 0.3 and θ〈¬co〉 = 0.7,

which makes our bias away from co annotations slightly

weaker than our bias for ro annotations. In our example,

we add two co factors: f〈co〉(fread:4) and f〈co〉(fclose:1).
These two factors, while distinct, share the same values

of θ〈co〉 and θ〈¬co〉.

In general, we use priors when we have some initial in-

sights that can be overcome given enough data. Further,

when we do not know enough to specify their values,

they can be omitted entirely.

3.5 Computing Probabilities

Equipped with four factors to encode beliefs for the three

functions, we now employ Equation 1 to compute final

probabilities for the possible specifications.

We first multiply the values of the factors (shown in

column “
∏

f” of Table 1) and then normalize those

values to obtain our final probabilities. From Ta-

ble 1, we can see that for the specification 〈ro,¬co, co〉
(first row) the product of its individual factor values is

0.9×0.8×0.7×0.3=0.151. After normalizing, we have

a probability of 0.483, making it the most probable spec-

ification. Observe that because of our bias towards

ro annotations, the second most probable specification,

〈¬ro,¬co,¬co〉, has a probability of 0.282 (almost half

as likely). Further, we can use the table to compute

the probabilities of individual annotations. To compute

P(fopen:ret = ro), we sum the probabilities in the last

column for each row where fopen:ret = ro.

These probabilities match our intuitive reasoning. The

probability P(fopen:ret = ro) ≈ 0.7 indicates that we are

confident, but not completely certain, that fopen could

be an ro, while P(fread:4 = ¬co) ≈ 0.9 shows that we

have a strong belief that fread is ¬co. For fclose, we

are left with a modest probability that P(fclose:1 = co) ≈
0.52. While this number seems low, it incorporates both

our bias towards ro annotations and our bias against co
annotations. Observe that if we rank the possible co’s by

their probabilities (in this case only two), fclose is at

the top. The more locations where fclose is used in a

similar manner the more confidently we believe it is a co.

3.6 How to Handle Magic Numbers?

By now, the reader may feel uneasy. Despite dressing

them in formalisms, factors simply map annotation val-

ues to magic numbers. (Or, in formal newspeak, the pa-

rameters of the model.) As with all uses of magic num-

bers two questions immediately surface: (1) where do

they come from? and (2) how hard are they to get right?

For our experiments, even crudely-chosen parameter

values (as we have done so far) work well. This ro-

bustness seems to be due to two features: (1) the large

amount of data that inference can work with and (2) the

strong behavioral patterns evident in code. Further, these

numbers seem portable across codebases. In a separate

paper [20], when we took the parameters learned on one

codebase A and used them for inference on another code-

base B the results were imperceptible compared to learn-

ing them directly on B from a perfect set of known anno-

tations. (We discuss the mechanics of learning in § 6.3.)

However, assume a hypothetical case where neither

approach works. Fortunately, the way annotations get

consumed provides algorithmic ways to converge to

good parameter values. First, we commonly run infer-

ence repeatedly over a codebase as it evolves over time

— thus, there will be significant numbers of known an-

notations from previous runs. Because our approach eas-

ily incorporates known information (in this case previ-

ously validated annotations), users can (1) apply machine

learning to refine parameter values, (2) recompute anno-

tation probabilities, or (3) do both simultaneously. In all

cases results will improve.

The same approach works even when applying infer-

ence to a codebase for the first time. Annotations ei-

ther get consumed directly or get fed to an error check-

ing tool. In both cases we can sort the annotations or

errors (based on the probabilities of their underlying an-

notations) from most-to-least probable, and inspect them

by going down the list until the number of inference mis-

takes becomes annoying. We then rerun inference using

the validated annotations as discussed above.

Second, it is generally clear how to conservatively bias

parameters towards higher precision at the expense of

lower recall. For example, assume we feed inferred an-

notations to a checker that flags storage leaks (ro with-

out a subsequent co). We can strongly bias against the

ro annotation to the extent that only a function with a

very low error rate can get classified as an ro. While this

misses errors initially, it ensures that the first round of

inspections has high quality errors. Rerunning learning

or inference will then yield a good second round, etc.
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Figure 4: Factor graph for the code example in Figure 3. Rectangular

nodes represent factors and round node represent annotation variables.

The top factors represent factors for prior beliefs (§ 3.4), while the bot-

tom factors represent behavioral tests (checks) (§ 5.1).

4 Annotation Factor Graphs

While Equation 1 is the formal backbone of our frame-

work, in practice we operate at a higher level with its cor-

responding visual representation called a factor graph. A

factor graph is an undirected, bipartite graph where one

set of nodes represent the variables A and the other set

of nodes represent the factors {fj}
J
j=1.

We call the factor graphs we construct for annotation

inference Annotation Factor Graphs (AFGs). Figure 4

depicts an AFG for the code example in Figure 3. De-

picted are nodes for annotation variables, factors for prior

beliefs (§ 3.4), and factors that represent two distinct

checks of the code fragment. Each factor node (square)

maps to a distinct factor multiplicand in Equation 1, each

variable node (oval) maps to an annotation variable, and

an edge exists between a factor node and variable node

if the variable is an input to the given factor. Further,

beliefs about one variable can influence another if there

is a path between them in the graph. For example, ob-

serve that the AFG in Figure 4 explicitly illustrates the

indirect correlation between fopen and fdopen through

their relationship to fclose. If we believe that fopen

is an ro, this belief propagates to the belief that fclose

is a co because of the check for fp1. This belief then

propagates to the belief that fdopen is an ro because of

the check for fp2. While the AFG illustrates this flow of

correlation, the underlying machinery is still Equation 1.

Thus AFGs meet our criteria for an inference framework

capable of combining, propagating, and reasoning about

imperfect information.

A benefit of factor graphs is that they more compactly

represent P(A) than the table in Section 3, which scales

exponentially in the number of possible annotations. The

inference algorithm we use to infer probabilities for an-

notations (§ 6.2) operates directly on the AFG, forgo-

ing the need to build a table and exploiting the graphical

structure to determine which features influence others.

5 Advanced Inference Techniques

Building on our concept of AFGs, this section goes be-

yond the basic inference techniques of Section 3 to more

advanced themes. We keep our discussion concrete by

exploring how to build factors for the ownership prob-

lem that incorporate multiple, differently-weighted be-

havioral tests (§ 5.1), exploit ad hoc naming conventions

(§ 5.2), and handle a function that may have no good la-

beling for a specification because it grossly violates the

ownership idiom (§ 5.3). Our experiments (§ 7) evaluate

an AFG with all of these features. While we discuss these

points in terms of the ownership problem, they readily

apply to other inference tasks.

5.1 Multiple Behavioral Tests

The properties we wish to infer almost always have mul-

tiple behavioral signatures. For signatures that are mutu-

ally exclusive (i.e., only one behavior can be exhibited at

once) we can define a single check factor that weighs the

different observed behaviors. For non-exclusive behav-

iors, we can simply define different factors as we have

done so far. We thus focus on the former. We illustrate

the technique by refining the checker in Figure 2 from a

checker which reduced all behaviors to two mutually ex-

clusive states ({Bug, OK}) to one which captures more

nuanced behavior with five final states, given in Figure 5.

The five signatures it accepts are:

1. Deallocator: a ro’s returned pointer reaches a single

matching co that occurs at the end of the trace.

2. Ownership: a ro’s returned pointer reaches a single

matching co that does not occur at the end of the trace

(i.e., is followed by one or more ¬co functions).

3. Contra-Ownership: a ¬ro’s returned pointer only

reaches ¬co’s.

4. Leak: an error where a ro’s returned pointer does not

reach a co.

5. Invalid use: an error, includes all misuses besides

Leak.

We assign weights to these outcomes as follows. First,

we bias away from the promiscuous assignment of ¬ro-

¬co (accepted by Contra-Ownership) and towards ro-co
(accepted by Deallocator) by giving Deallocator twice

the weight of Contra-Ownership. Since Deallocator is

the harshest test, we use it as a baseline, giving it the

weight 1.0 and, thus, Contra-Ownership the weight 0.5.

The other non-error case, Ownership, is the least intuitive

(and we arrived at it after some experimentation): we

weigh it slightly less than Contra-Ownership since oth-

erwise the AFG over-biases towards ro-co annotations.

As before, we weight error states less than non-error

states because of the assumption that programs generally

behave correctly (§ 2.1). Thus, for errors we assign a low

score: 0.1 for leaks and 0.01 for all other bugs (the latter

occurring very rarely in practice). (Note that even if a

codebase had no errors we would still assign these out-

comes non-zero values since static analysis imprecision

can cause the checker to falsely flag “errors.”)

Although all of these weights were specified with sim-

ple heuristics, we show in Section 7 that they provide re-

spectable results. Moreover, such weights are amenable



EXTENDED-DFA STATE f〈check〉 REASON FOR WEIGHT

Deallocator 1.0 Baseline

Contra-Ownership 0.5 Weight half as much as Deallocator
Ownership 0.3 Slightly less than Contra-Ownership

Leak 0.1 Low weight: errors are rare

Invalid Use 0.01 Such errors are very rare

Table 2: Values of f〈check〉 for the behavioral signatures for the own-

ership idiom. Observe that for this factor the values do not sum to 1,

but instead are based reasoning about relative “reward.”
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Figure 5: Complete DFA used by a static checker to implement behav-

ioral tests for Ownership. Shaded nodes are error states.

to automatic tuning (§ 6.3).

5.2 Ad Hoc Knowledge: Naming Conventions

Ad hoc knowledge captures information such as biases

for certain annotations, naming conventions, and other

heuristics. We further illustrate how to express such fea-

tures by using factors to model naming conventions.

Given a list of keywords suggestive of an ro an-

notation (e.g., “alloc”, “open”), we construct a factor

f〈keyword,ro〉 for each function whose name contains the

keyword as a substring:

f〈keyword,ro〉(A) =

{

θ〈keyword,ro〉 : A = ro
θ〈keyword,¬ro〉 : A = ¬ro

This factor is attached to a function’s ro/¬ro annotation

variable and rewards or penalizes ro annotations depend-

ing on the ratio of the factor’s values. This factor (and its

parameters) is replicated for all functions whose name

contains the given keyword.

For co variables, the construction is similar, except

that instead of the factor being associated with one ro
annotation variable, it is associated with all the co anno-

tation variables for a function. If any of those variables

have the value co, then the factor maps to θ〈keyword,co〉

and to θ〈keyword,¬co〉 otherwise. Our reasoning is that

naming conventions imply that at least one of the param-

eters should have a co annotation.

We only construct such factors if the function contains

the keyword; in our experience while the presence of a

keyword may suggest a function’s role, the absence of a

keyword usually provides no additional information.

5.3 Does the Model Fit?

The ownership idiom only approximates how developers

use resources. Thus, there will be functions that do not fit

it (e.g., byzantine uses of reference counting). If a func-

tion is far enough outside the ownership model, then no

matter what annotation(s) we assign it, ro or ¬ro, co or

¬co, the checker will flag a proliferation of “errors.” This

problem arises in many inference contexts: the property

we want to infer assumes some structure of how code

behaves, and when those assumptions are wrong, the re-

sultant noise can hurt inference dramatically. AFGs let

us tackle this problem by simply modeling the possibil-

ity that a function may not fit the ownership. We discuss

two ways to do so.

The first way just adds another annotation ¬fit to the

domain of our annotation variables and models “not fit-

ting” as yet another behavioral signature (as in § 5.1).

We modify the checker described in Section 5.1 so that if

it encounters a ¬fit annotation while checking it tran-

sitions to a special end-state Outside Model. For the

ownership idiom, this increases the number of end-states

in the checker DFA from five to six. We then change

f〈check〉 to assign Outside Model a value slightly above

those for errors but below that of acceptable states (e.g.,

0.2). Thus, if all values for an annotation variable cause

many errors, we will overcome our bias against the ¬fit

value and classify the variable as not fitting the model.

Once an annotation variable is classified as ¬fit , all be-

havioral tests involving that function are effectively dis-

carded since the outcomes of those checks will always be

Outside Model. Thus, Outside Model represents a state

where the checker accepts any behavior, regardless of the

annotation values.

The second way treats the not-fit property more glob-

ally: if the annotation variables for a function’s return

value or any of its formal parameters cause it to not fit,

we remove the entire function from our checks. Imple-

menting this requires correlating annotation variables in

the AFG in a new way by adding a “meta-annotation”

for each function whose corresponding annotation vari-

able has the domain {fit,¬fit}. For example, for the

function fopen we would create the variable fopen:fit .

Similarly as above, we modify the checker to include an

Outside Model state, but because the not-fit property is

now shared by all of the function’s annotation variables,

the checker consults the fit-variable for a function imme-

diately prior to consulting the values of any of the func-

tion’s regular annotation variables. As before, when the

value is ¬fit the checker transitions to Outside Model ;

otherwise execution continues as normal by consulting

the regular annotation variable and taking the usual tran-

sition in the DFA. Consequently, a function’s fit-variable

serves as an additional input to each check factor that in-

volves at least one of the function’s regular annotation

variables. As before, we state a strong bias toward a

value of fit by attaching a prior belief factor to the fit-

variable. Thus, if all values for any of a function’s an-



notation variables lead to many errors, we overcome our

bias against the ¬fit value and classify the function as

not fitting the model.

As described in Section 7.3, this second construction

found aspects of Linux that proved noisome for infer-

ence. Moreover, neither approach is specific to the own-

ership idiom and can be applied to other annotation in-

ference domains.

6 Implementation

We now discuss our implementation, including the de-

tails of the actual checker and how probabilities are com-

puted in practice from the AFG.

6.1 The Checker

Our program analysis is built on CIL [27] and is simi-

lar to xgcc [15]: unsound, but efficient and reasonably

effective. The analysis engine, written in OCaml, is par-

tially derived from the version of xgcc as described in

Chou’s thesis [6]. Our entire factor graph implementa-

tion is written in OCaml as well.

For the ownership checker, beyond constructing

checks for every callsite that returns a pointer, we track

the use of string constants within the function and treat

them as if they were returned by a ¬ro. Pointer deref-

erences are modeled as implicit calls to a ¬co function

to monitor if an owning pointer is used in any way af-

ter it is claimed. We also perform minor alias tracking:

when tracking a pointer p and we observe the expression

q = p (where q is a local variable) we add q to p’s alias

set. We do not model ownership transfer from p to q

(unlike [18]) and simply treat q as another name for p

since both pointers are local variables (i.e., the reference

has not escaped the function). Further, when a tracked

pointer is involved in a return statement, we consult

the corresponding ro (¬ro) annotation of the enclosing

function and treat it essentially as a co (¬co) annotation

except that for error conditions we always transition to

the Invalid Use state. This follows from the intuition

that while programmers may accidentally leak resources

on unforeseen paths, when implementing a function they

reason very consciously about the properties of the func-

tion’s return value. Hence ownership errors at return

sites are considered very rare. This allows the AFG to

model a form of inter-procedural reasoning that handles

idioms such as wrapper functions.

Because the checker analyzes multiple paths stem-

ming from a single pointer returning callsite, we sum-

marize the results over all analyzed paths by reporting

the most pessimistic DFA state found: Invalid Use, fol-

lowed by Leak, Ownership, Contra-Ownership, and fi-

nally Deallocator. The idea is to penalize annotations

that induce errors, and reward annotations that com-

pletely obey our strictest behavioral signatures.

⊲ A: annotation variables, known: known annotations

GIBBSSAMPLE(A, known)

a = {}
⊲ initial random values

for v ∈ A, v 6∈ known
a[v] = RANDOMVALUE(DOMAIN(v))

⊲ burn in the sample

for j = 1 to 1000
for v ∈ PERMUTEVARIABLES(A), v 6∈ known

N = 0.0
⊲ compute all scores that rely on v’s annotation

for d ∈ DOMAIN(v)

scores = {}
a[v] = d
scores[d] = FACTORSSCORE(v, a)

N = N + score[d]
⊲ normalize scores

for d ∈ DOMAIN(v)

scores[d] = scores[d]/N
a[v] = DISTRIBUTIONSAMPLE(scores)

return a

Figure 6: Pseudocode for Gibbs sampling from P(A).

Finally, there are paths the checker does not analyze

because they are beyond its limited reasoning capability.

We abort the analysis of paths where a tracked pointer is

stored either into a global or the field of a structure. If

all the paths for a given check would be discarded (this

is determined when the AFG is constructed) the check is

not included in the AFG. While this leads to some se-

lection bias in the paths we observe, our decision was to

focus on paths that would provide the cleanest evidence

of different behavioral signatures. Accurately modeling

the heap shape of systems programs statically is an im-

portant open problem that we (fortunately) did not need

to solve in order to infer properties of many functions.

6.2 Probabilistic Inference

In theory it is possible to compute probabilities for an-

notations by directly using Equation 1, but this requires

enumerating an exponential number of combinations for

the values of annotation variables. Instead, we estimate

probabilities using Gibbs sampling [13], which generates

approximate samples from the distribution P(A). Ab-

stractly this algorithm simulates a random walk through

a Markov chain. Theory shows that once the chain is

run long enough it converges to its stationary distribu-

tion (equilibrium), and sampling from that distribution is

equivalent to drawing samples from P(A).

While the full details of Gibbs sampling are beyond

the scope of this paper, the pseudocode for generating

samples is depicted in Figure 6. Gibbs sampling has

two key advantages over other algorithms: (1) it treats

the checker implementation as a black box and (2) at all

times there is a complete assignment of values (in a) to

all the variables in the AFG. The upshot is that we always

run the checker with a full set of annotations.

To generate a single sample, we perform “burn-in,” a



process of iteratively adjusting the values of the variables

to drift them towards a configuration consistent with be-

ing drawn from P(A). Determining the minimum num-

ber of iterations for the burn-in is generally perceived as

a black art; we have chosen a large number (1000) that

has yielded consistently reliable results.

Each iteration of the burn-in visits each variable v in

the AFG in random order. To generate a new value for v,

for each of its possible values we call FACTORSSCORE

to compute the product of all the factors in the AFG that

share an edge with v. This computation will re-run the

checker for every check in which v appears. The result

is a single non-negative score for each value d of v. The

scores are then normalized to create a probability distri-

bution over v’s values, and finally a new value for v is

sampled from this distribution.

After the burn-in completes, we take a snapshot of the

values of all variables and store it as a single sample from

P(A). From these samples we estimate probabilities for

annotations. For example, to estimate the probability that

an annotation has the value ro, we simply count the frac-

tion of samples where it had the value ro.

This naı̈ve description is subject to numerous well-

known improvements. First, all computations are done

in log-space to avoid problems with arithmetic roundoff.

Second, we apply standard “annealing” tricks to improve

convergence of the simulated Markov chain.

Our most important optimization (which we devised

specifically for AFG inference), involves the execution of

the checker. Because the checker will be executed many

times, we cache checker results for each check by record-

ing what values in a the checker consulted and storing

the outcome of the check in a trie. This memoization is

agnostic to the details of the checker itself, and leads to

a two orders of magnitude speedup. The caches tend to

be fairly well populated after generating 3-5 samples for

the AFG, and is the primary reason the algorithm scales

to analyzing real codebases.

6.3 Learning Parameters

If some annotations are known for a codebase, the pa-

rameters of an AFG can be learned (or tuned) by apply-

ing machine learning. The general approach to learning

parameters for factor graphs is to apply gradient ascent

to maximizing the likelihood function, where in this case

the data is the set of known annotations. At a high level,

gradient ascent iteratively tunes the parameters of the

AFG to maximize the probability that the known anno-

tations would be predicted using Equation 1. Full deriva-

tion of the gradient and the specific details for getting

gradient ascent to work for AFGs is beyond the scope of

this paper, but complete details can be found in [20]. Sec-

tion 7.4 discusses our experience with parameter learning

for leveraging codebase naming conventions.

AFG Size Manually Classified Annotations

Codebase Lines (103) |A| # Checks ro ¬ro ro
¬ro

co ¬co co
¬co

Total

SDL 51.5 843 577 35 25 1.4 16 31 0.51 107

OpenSSH 80.12 717 3416 45 28 1.6 10 108 0.09 191

GIMP 568.3 4287 21478 62 24 2.58 7 109 0.06 202

XNU 1381.1 1936 9169 35 49 0.71 17 99 0.17 200

Linux 6580.3 10736 92781 21 31 0.67 19 93 0.20 164

Table 3: Quantitative breakdown for each codebase of: (1) the size of

the codebase, (2) the size of constructed AFG, and (3) the composition

of the test set used for evaluating annotation accuracy. For the AFG
statistics, |A| denotes the number of annotation variables.

7 Evaluation

We applied our technique to five open source codebases:

SDL, OpenSSH, GIMP, XNU, and the Linux kernel. Ta-

ble 3 gives the size of each codebase and its correspond-

ing AFG. For each codebase’s AFG we generated 100

samples using Gibbs sampling to estimate probabilities

for annotations. We sort annotations from most-to-least

probable based on these annotation probabilities. Note,

we provided no “seed” annotations to the inference en-

gine (e.g., did not include malloc, free). Since ro and

co represent two distinct populations of annotations, we

evaluate their accuracy separately. For our largest AFG

(Linux), Gibbs sampling took approximately 13 hours on

a 3 GHz dual-core Intel Xeon Mac Pro, while for the

smallest AFG (SDL) sampling finished in under 5 min-

utes. Unless otherwise noted, the AFGs we evaluate in-

clude the factors for modeling prior biases (§ 3.4) and for

multiple behavioral tests (§ 5.1).

Table 3 gives the breakdown of the “test set” of an-

notations we manually classified for each codebase. We

selected the test set by: (1) automatically extracting a

list of all functions involved in a check, (2) randomly

picking n functions (100 ≤ n ≤ 200) from this list,

and (3) hand classifying these n functions. Note that

this method produces a very harsh test set for inference

because it picks functions with few callsites as readily

as those with many. A seemingly innocent change pro-

duces a drastically easier test set: pick n functions from

a list of all callsites. The selected test set would inflate

our inference abilities since the probability of picking a

function scales with the number of callsites it has. As

a result, most functions in the test set would have many

callsites, making inference much easier. In aggregate,

we manually classified around 1,000 functions, giving a

very comprehensive comparison set.

We first measure the accuracy of inferred annotations

(§ 7.2). We then discuss the model’s resilience to unan-

ticipated coding idioms (§ 7.3). We next discuss our ex-

perience extending the core AFG model with keyword

factors (§ 7.4). Finally we discuss using inferred annota-

tions as safety nets for bug-finding tools (§ 7.5) and for

finding bugs (§ 7.6).



7.1 Codebases

We evaluated our technique on important, real-world ap-

plications and systems based on both their size and their

disparate implementations. We strove for project diver-

sity in coding idioms and resource management.

The smallest project, SDL, is a challenge for infer-

ence because most functions have few callsites (most are

called fewer than four times). Further, because it was

originally developed for porting games from Windows

to Linux, it employs uncommonly-used resource man-

agement functions from external libraries such as XLib.

Thus, inferring these functions is not only challenging

but also useful. As our results show, the AFG model

readily infers correct ro and co annotations for functions

in SDL that have as few as one or two callsites.

OpenSSH and the GIMP are widely-employed appli-

cations with modest to large source code size. The GIMP

image manipulation program uses custom memory man-

agement functions and a plug-in infrastructure where

plug-ins are loaded and unloaded on demand and where

leaking plug-in memory is not considered an error be-

cause of their short lifetime. Despite such noise, our

AFG worked well, and discovered several memory leaks

in the GIMP core.

XNU (the kernel for Mac OS X) contains many spe-

cialized routines for managing kernel resources. Our re-

sults are mostly for the core kernel because much of the

rest of XNU is written in C++, which our front-end does

not handle. Inferred annotations for XNU immediately

led to the discovery of bugs.

The Linux 2.6.10 kernel is a strong test because it

is huge and its code frequently breaks the ro-co idiom

due to sporadic use of (among other things) reference-

counting and weird pointer mangling. Despite these

challenges, our AFG successfully analyzed Linux with

a reasonable annotation accuracy.

Note that AFG size scales with the number of checks,

which only roughly correlates with code size: we ignore

functions not involved in at least one check and (by ne-

cessity) skip function implementations our C front-end

had difficultly parsing.

7.2 Annotation Accuracy

This section measures the accuracy of our inferred spec-

ifications. Our first experiment, shown in Table 4, gives

a feel for the initial accuracy of inferred annotations. It

presents the results from the first 10 and 20 inspections

of the highest probability annotations for each codebase.

These are selected from all the annotation variables in

the AFG. The table assumes that the ro and co annota-

tions are inspected separately, although this need not be

the case in practice. The first few inspections are im-

portant as they represent our most confident annotations

and will be the basis of a user’s initial impression of the

Inspections by P(ro) Inspections by P(co)

Codebase Inspections ro’s ¬ro’s co’s ¬co’s

SDL 10 10 0 9 1

20 20 0 17 3

OpenSSH 10 10 0 10 0

20 19 1 16 4

GIMP 10 10 0 9 1

20 20 0 16 4

XNU 10 9 1 9 1

20 16 4 17 3

Linux 10 8 2 9 1

20 17 3 18 2

Table 4: Absolute number of ro (co) annotations found within the first

10 and 20 inspections for each codebase.

results. These top ranked annotations have near perfect

accuracy for ro’s and co’s on all codebases.

We then more thoroughly measure annotation accu-

racy by comparing inferred annotations to the entire test

set for each codebase (from Table 3). We also compare

the accuracy of our base AFG against two ablated (i.e.,

broken) ones: AFG-NOFPP, which measures the effect

of decreasing checker power, and AFG-RENAME, which

measures the effect of decreased correlation.

Figure 7 shows the annotation accuracy of all three

models for each codebase test set using Receiver Op-

erating Characteristics (ROC) curves [11]. The ROC

curve for ro annotations plots the classification accuracy

as the classification probability threshold t slides from 1

to 0. Any annotation with a probability P(A = ro) ≥ t
is classified as ro, and ¬ro otherwise. The x-axis de-

picts, for each value of t, the cumulative fraction of all

the ¬ro’s in the test set that were mistakenly classified

as ro (the false positive rate, or FPR). The y-axis depicts

the cumulative fraction of all the ro’s in the test set that

were correctly classified as ro (the true positive rate, or

TPR). Perfect annotation inference would yield a 100%

TPR with a 0% FPR (visually a step, with a line segment

from (0, 0) to (0, 1) and another from (0, 1) to (1, 1)),
as all the ro’s appear before all of the ¬ro’s when the

annotations are sorted by their probabilities. Random la-

beling yields a diagonal line from (0, 0) to (1, 1). With

ROC curves we can easily compare accuracy across code

bases since they are invariant to test set size and the rela-

tive skew of ro’s to ¬ro’s and co’s to ¬co’s.

Basic AFG: as can be seen in the figure, the AFG

model has very high accuracy for all codebases except

Linux, where accuracy is noticeably lower but still quite

good. SDL, had both the least code and the highest anno-

tation accuracy, with a nearly perfect accuracy for co’s.

Further, 35% of all ro’s for SDL are found without in-

specting a single ¬ro. For OpenSSH we observe around

a 90% TPR with a FPR of 10% or less. Both GIMP and

XNU observe an 80% or better TPR for both ro’s and

co’s with a 20% FPR.

Accuracy appears to decrease with increased codebase

size. While inspecting results, we observed that larger



Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

AFG
AFG−NoFPP
AFG−Rename

(a) SDL: ro

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) SDL: co

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) OpenSSH: ro

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(d) OpenSSH: co

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(e) GIMP: ro

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(f) GIMP: co

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(g) XNU: ro

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(h) XNU: co

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(i) Linux: ro

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(j) Linux: co

Figure 7: ROC curves depicting accuracy of inferred annotations. Re-

sults are averaged over 10 runs where we add Gaussian noise to AFG
parameters. Error bars (shown at the classification probability thresh-

olds of 0.95, 0.7, and 0.4) depict standard deviations.

# Callsites per Function % of Functions with . . .

Codebase Mean Median ≥ 5 Callsites ≥ 10 Callsites

SDL 4.51 2 22.4 9.3

OpenSSH 7.41 2 23.0 11.5

GIMP 13.11 2 32.6 21.2

XNU 9.19 2 24.0 11.5

Linux 4.22 2 20.7 9.7

Table 5: Summary statistics of the number of callsites per function

(only for callsites that are consulted by at least one check). Since the

mean number of callsites per function is much higher than the median,

the number of callsites has a long-tailed distribution.

codebases frequently violate the ro-co idiom and have a

lot of code beyond the reasoning power of our checker.

However, even the hardest codebase, Linux, had decent

accuracy: we were able to infer 70% (62%) of ro (co)

functions with a 30% FPR.

While Figure 7 depicts overall codebase accuracy

(with an aggregate annotation accuracy of 80-90% on the

first four codebases, assuming a classification probabil-

ity threshold of 0.5), in truth these numbers are highly

pessimistic. First, as shown in Table 4, the accuracy of

both ro and co annotations for the top ranked inspections

(from the set of all inferred annotations) is near-perfect

across all codebases. Thus, users will almost always see

valid annotations when inspecting the highest confidence

results. More importantly, we observe on all codebases

that the distribution of the number of callsites per func-

tion is highly skewed (Table 5), with a little over 50% of

all functions being called at most twice, and only 20-30%

being called five times or more. Assuming we classify,

using a probability threshold of 0.5, the annotations for

functions that are called five or more times, we observe

on all codebases (including Linux) an 80-95% accuracy

for both ro and co annotations, and an overall accuracy

of 90%. While annotation accuracy for single callsite

functions is important, correctly inferring annotations for

functions that are called at least a few times often has

much higher practical impact because those annotations

will be used throughout a codebase (and often provide

the greatest traction for bug-finding tools). Moreover,

our annotation accuracy for single callsite functions is

far better than random labeling. For such functions, on

Linux the AFG model correctly infers around twice as

many ro and co annotations as random labeling for the

same number of inspected false positives.

AFG-NoFPP: reduces the checker’s analysis preci-

sion by disabling false path pruning [6] (FPP), which

eliminates many bogus paths through the code that static

analysis would otherwise believe existed. In practice

FPP reduces false error messages by recognizing many

control-dependent branches such as:

if( x == 1 ) p = malloc();
. . .
if( x == 1 ) free(p);



Disabling FPP will cause the checker to believe that there

are four possible paths instead of two. Consequently, re-

moving FPP generates significant noise in the checker’s

results (the next section provides more detail). Unsur-

prisingly, for all codebases, AFG-NOFPP has signifi-

cantly reduced accuracy for co annotations due to false

paths. The main way false paths cause problems for

ro-co inference is that they make it appear that some

functions claim a resource when in reality they are never

called in this manner. While this always has a negative

impact on co accuracy, because of the large ratio of ro’s

to ¬ro’s for GIMP (Table 3) this over-inflates the evi-

dence for ro annotations and leads to increased ro accu-

racy while still having poor co accuracy. AFG-NOFPP

performs very poorly on XNU and Linux (to the degree

that random labeling does better) as the use of many re-

sources in these codebases are highly control-dependent.

AFG-Rename: evaluates the benefit of exploiting

inter-correlation between annotations by systematically

destroying it. We do so by “renaming,” for each callsite,

the called function so that each callsite refers to a distinct

function. This causes AFG-RENAME to have an annota-

tion for each callsite of a function. We compute proba-

bilities for these annotations as normal, but then compute

probabilities for the original function annotations (non-

renamed) by averaging the probabilities across the per-

callsite annotations. The end result is that by we can see

how much correlation helps inference by contrasting the

performance of AFG-RENAME to AFG.

The curves for AFG-RENAME perform closest to AFG

on the smallest codebases, and gradually diverges (espe-

cially for co accuracy) as we look at larger codebases.

This is largely due to the increased amount of correlation

in the larger codebases. The accuracy of AFG-RENAME

diverges significantly from AFG for codebases larger

than OpenSSH so that co performance degenerates to that

produced by AFG-NOFPP. (Note that for OpenSSH and

GIMP, an apparent bump in co accuracy of AFG-RENAME

over AFG in the tail of the ROC curve is due a single co
annotation, and is within the margin of noise induced by

the test set size.)

Sensitivity to magic numbers. As part of this ex-

periment we also measured our earlier claim that even

rough guesses of AFG parameters generate acceptable

(initial) results by doing the following sensitivity anal-

ysis. We perturb each AFG parameter by a randomly

generated amount of Gaussian noise (σ2 = 0.02), which

maintains the relative ordering between parameter val-

ues, but skews their values slightly and thus their relative

odds. We generate 10 sets in this manner, use them to

infer annotations, and then report averages and standard

deviations (depicted as error bars in Figure 7) across all

runs. In general, as the figure shows, the error bars for

AFG are quite small, illustrating that our inference re-

sults were robust to small perturbations in parameter val-

ues. While we believe the parameters are amendable to

tuning, the choice of numbers is not so brittle as to cause

violent changes in results when perturbed slightly.

7.3 Detecting Unanticipated Coding Idioms

Initially, classifications for Linux were slightly worse

than the other codebases because its ownership model is

more subtle than the one we attempt to infer. Using the

fit model variables discussed in Section 5.3, we quickly

identified a corner case in Linux that we needed to ex-

plicitly model in our checker. A common practice in

Linux is to conflate the values of pointers and to store er-

ror codes in them instead of memory addresses. Since the

kernel resides in a restricted address space, error codes

can be mangled into pointer values that lie outside this

region. Such pointers are frequently tested as follows:

p = foo( . . . );
if( IS ERR PTR(p) ) { /* error path */ }

On the true branch of such tests the reference to p ap-

pears to be lost, when in reality it was not a valid pointer.

This causes serious problems because IS ERR PTR is far

outside our simple ro-co model. Because it appears hun-

dreds of times, inference computed a probability of 0.99
that this function did not fit (¬fit) the ro-co model and all

checks involving IS ERR PTR were effectively removed

as evidence. We immediately noticed the highly probable

¬fit value for IS ERR PTR and modified our checker to

recognize the function and prune analysis of paths where

its return value for a tracked pointer is true, allowing us

to glean evidence from these checks.

7.4 Additional Information

Our last experiment for annotation accuracy looks at how

overall annotation accuracy for XNU improves as infer-

ence is given additional information. We use (1) a set

of 100 known good function annotations to serve as a

training set — in practice these would be harvested as a

checking tool is repeatedly run over a code base, and (2)

a list of substrings a programmer feels might be relevant

to the labeling of a function. We provided a relatively

small set of 10 strings such as “alloc” and “get,” but there

is nothing to keep a motivated user from listing all inter-

esting strings from their problem domain. We applied pa-

rameter learning to train the parameters for the keyword

factors based on a training set (as described in [20]), and

tested the classification accuracy on the remaining 100.

We set the classification probability threshold at 0.5 to in-

dicate whether an annotation was ro or ¬ro (co or ¬co)

to get a measure of overall accuracy.

For XNU, the baseline aggregate accuracy (inference

without knowing the training set) was 81.2%, and with

the addition of knowing the annotations in the training set



Function Param. Label Sites Prob.

XAllocWMHints ret ro 1 0.99

X11 XFree 1 co 9 0.98

API XGetVisualInfo ret ro 1 0.97

XListPixmapFormats ret ro 1 0.97

X11 CreateWMCursor ret ro 1 0.95

XOpenDisplay ret ro 2 0.86

XGetModifierMapping ret ro 1 0.86

XCreateGC ret ro 2 0.84

XFreeGC 2 co 2 0.82

XFreeModifierMap 1 co 1 0.79

XCloseDisplay 1 co 2 0.76

dlopen ret ro 1 0.95

C opendir ret ro 1 0.87

Standard setmntent ret ro 1 0.74

Library closedir 1 co 1 0.73

endmntent 1 co 1 0.58

Table 6: A selection of correctly inferred labels for external functions

inferred from analyzing SDL and not in the Coverity Prevent “root set.”

“Sites” is the number of callsites for the given function utilized by the

program analysis and used for inference.

accuracy of the test set increased to 84.2%. Knowledge

of the training set during inference simulates already

knowing some of the annotations. Equipped with the

keyword information alone accuracy was 89.1%, with

the addition of knowing the annotations in the training set

the accuracy was 90.1%. This experiment demonstrates

the power of our technique: we are able to easily incor-

porate additional information and have that information

improve the accuracy of our results. We also bench-

marked these results against an AFG that only included

keyword and prior belief factors. While the top ranked ro
and co annotations inferred from this model were usually

correct, very quickly accuracy degrades as annotations

are inspected. Overall, ro and co accuracy (the fraction

of ro’s and co’s classified correctly) is 22-33% worse

when using keyword information alone, while accuracy

for ¬ro’s and ¬co’s also noticeably suffers.

7.5 Safety Nets for Bug-Finding Tools

We evaluate our classifications by comparing the inferred

ro and co functions classifications for SDL against the

allocator and deallocator functions used by Prevent [7].

Coverity Prevent is a commercial static analysis tool

that contains several analyses to detect resource er-

rors. It performs an unsound relaxation analysis through

the call-graph to identify functions that transitively call

“root” allocators and deallocators such as malloc and

free. Prevent’s analysis is geared to find as many de-

fects as possible with a low false error rate. The set of

allocators and deallocators yielded by our inference and

Prevent (respectively) perform a synergistic cross-check.

Prevent will miss some allocators because they do not

transitively call known allocators, and static analysis im-

precision may inhibit the diagnosis of some functions

that do. On the other hand, Prevent can classify some

functions we miss since it analyzes more code than we

do, has better alias tracking and better path-sensitivity. It

void gimp enum stock box set child padding (. . .) {
GList *list;
. . .
for( list = gtk container get children(. . .); list;

list = g list next(list) ) { . . . }
}

Figure 8: [BUG] gtk container get children returns a newly

allocated list. The pointer to the head of the list is lost after the first

iteration of the loop.

GList* gtk container get children (GtkContainer *container) {
GList *children = NULL;
/* gtk container foreach performs a copy of

the list using an iterator interface and

a callback to perform an element copy. */

gtk container foreach (container,
gtk container children callback,
&children);

/* The list “children” is reversed. The last pointer

in the list is now the owning pointer. */

return g list reverse (children);
}

Figure 9: Source code from the Gtk+ library of

gtk container get children. The function performs a

complicated copy and reversal of a linked list. Inference labels the

return value (correctly) as ro without analyzing the implementation.

found four classifications that our inference missed. We

inspected each of the four and all were due to the fact

that our static analysis made mistakes rather than a flaw

in the inference algorithm.

Our belief that manual specifications will have holes

was born out. Inference found over 40 allocator and deal-

locator functions that Prevent missed. Table 6 gives a

representative subset. Prevent missed the bulk of these

because SDL uses obscure interfaces which were not an-

notated and which were not part of the SDL source code

(and therefore it could not analyze them). This experi-

ment shows that even highly competent, motivated de-

velopers attempting to annotate all relevant functions in

a “root set” easily miss many candidates.

Finally, our inference found an annotation mis-

classified by Prevent’s relaxation. The function

SDL ConvertSurface returns a pointer obtained by

calling SDL CreateRGBSurface. This function, in

turn, returns a pointer from malloc, a well-known al-

locator function. Prevent misclassifies the return value

of SDL ConvertSurface as ¬ro, an error likely due

to the complexity of these functions. Our checker

also had problems understanding the implementation of

these functions, but correctly inferred an ro annota-

tion for its return value based on the context of how

SDL ConvertSurface was used. We reported this case

to Coverity developers and they confirmed it was a mis-

classified annotation.



7.6 Defect Accuracy

Using our inference technique, we diagnosed scores of

resource bugs (most of them leaks) in all five codebases,

but since our focus was on annotation accuracy, we did

not perform an exhaustive evaluation on all codebases of

the quantity of bugs our tool found. All diagnosed bugs

were discovered by ranking errors by the probabilities of

the annotations involved, and for each codebase led to

the discovery of bugs within minutes.

One particular bug found in GIMP highlights the infer-

ential power of AFGs. Figure 8 shows an incorrect use

of the function gtk container get children (whose

return value we correctly annotate as ro) in the core

GIMP code and illustrates the power of being able to in-

fer the annotation for a function based on the context in

which it is used. This function returns a freshly allocated

linked list, but in this code fragment a list iteration is per-

formed and the head of the list is immediately lost. We

did not analyze the source of the Gtk+ library when an-

alyzing GIMP; this annotation was inferred solely from

how the function was used.

The implementation of gtk container get-

children, excerpted in Figure 9, shows how the list is

created by performing a complicated element-wise copy

(involving a custom memory allocator) after which the

list is reversed, with the new head being the “owning”

pointer of the data structure. Even if the implementation

were available, understanding this function would pose

a strenuous task for classic program analysis.

8 Related Work

Most existing work on inferring specifications from code

looks for rules of the form “do not perform action a be-

fore action b” or “if action a is performed then also per-

form action b.” The inferred rules are captured in (prob-

abilistic) finite-state automata (FSAs and PFSAs).

Engler et al [9] infer a variety of properties from tem-

plate rules, including a-b pairs in systems code. Exam-

ples include inferring whether malloc is paired with

free, lock with unlock, whether or not a null

pointer check should always be performed on the return

value of a function, etc. The intuition is that frequently

occurring patterns are likely to be rules, while deviant be-

havior of strongly observed patterns are potential bugs.

Our work can be viewed as a natural generalization of

this earlier work to leverage multiple sources of infor-

mation and exploit correlation.

Weimer and Necula [30] observed that API rule vio-

lations occur frequently on “error paths” such as excep-

tion handling code in Java programs. Consequently, they

weight observations on these paths differently from reg-

ular code. We observe similar mistakes in systems code,

although there identifying an error path is not always

trivial. This poses a potential form of indirect correla-

tion to exploit for inferring annotations. High confidence

specifications can be used to infer error paths, which in

turn can be used to infer other specifications.

Li and Zhou [22] and Livshits and Zimmerman [25]

look for generalized a-b patterns in code. Li and Zhou

look for patterns across a codebase, whereas Livshits and

Zimmerman look at patterns that are correlated through

version control edits. While general, these approaches

are based on data mining techniques that often require

large amounts of data to derive patterns, meaning it is

unlikely they will be able to say anything useful about

infrequently called functions. It is also unclear how to

extend them to incorporate domain specific knowledge.

Ammons et al [2] have a dynamic analysis to learn

probabilistic finite-state automatons (PFSAs) that de-

scribe the dependency relationship between a series of

function calls with common values passed as arguments.

Concept analysis is then used to aid the user, somewhat

successfully, in the daunting task of debugging the can-

didate PFSAs [3]. Their method suffers from the usual

code coverage hurdles inherent in a run-time analysis,

making it difficult for such methods to infer properties

about rarely executed code. They also assume program

traces that illustrate perfect compliance of the rules being

inferred (i.e., all traces are “bug-free”). This limitation

is overcome by Yang et al [34], but unlike AFGs, their

mechanism for handling noise and uncertainty is specific

to the patterns they infer. In addition, it is unclear how

to extend either method to incorporate domain specific

knowledge in a flexible and natural way.

Whaley et al [31] derive interface specifications of the

form “a must not be followed by b” for Java method calls.

Their technique relies on static analysis of a method’s

implementation to find out if calling b after a would pro-

duce a runtime error. Alur et al [1] extend their method

using model checking to handle sequences of calls σ
and to provide additional soundness. Although powerful,

these techniques examine the implementation of meth-

ods rather than the context in which they are used. The

results of such techniques are thus limited by the ability

of the analysis to reason about the code, and may not be

able to discover some of the indirectly correlated specifi-

cations our approach provides.

Hackett et al [14] partially automate the task of anno-

tating a large codebase in order to find buffer overflows.

Their method is used in an environment with significant

user input (over a hundred thousand user annotations)

and is specific to their problem domain. Further, it is un-

clear how to extend their technique to leverage additional

behavioral signatures.

Ernst and his collaborators developed Daikon [10,29],

a system that infers program invariants via run-time mon-

itoring. Daikon finds simple invariants specifying rela-

tional properties such as a ≥ b and x 6= 0, although



conceivably inferring other properties is possible. Their

method is not statistical, and invariants inferred require

perfect compliance from the observed program.

More distantly related are techniques that tackle the

inverse problem of “failure inference” for postmortem

debugging. The goal is to diagnose the cause of a fail-

stop error such as an assertion failure or segmentation

fault. Both pure static analysis [26] and statistical de-

bugging techniques have been employed with inspiring

results [16, 23, 24]. Although specification inference and

failure inference have different goals, we believe that

many of the ideas presented in this paper could be readily

applied in that domain.

9 Conclusion

This paper presented a novel specification inference

framework based on factor graphs whose key strength is

the ability to combine disparate forms of evidence, such

as those from behavioral signatures, prior beliefs, and

ad hoc knowledge, and reason about them in the com-

mon currency of factors and probabilities. We evaluated

the approach for the ownership problem, and achieved

high annotation accuracy across five real-world code-

bases. While our checker was primitive, with inferred

annotations we immediately discovered numerous bugs,

including those that would impossible to discover with

state-of-the-art program analysis alone.
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