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Abstract

The efficient coding hypothesis holds that neural receptive fields are adapted to
the statistics of the environment, but is agnostic to the timescale of this adaptation,
which occurs on both evolutionary and developmental timescales. In this work we
focus on that component of adaptation which occurs during an organism’s life-
time, and show that a number of unsupervised feature learning algorithms can
account for features of normal receptive field properties across multiple primary
sensory cortices. Furthermore, we show that the same algorithms account for
altered receptive field properties in response to experimentally altered environ-
mental statistics. Based on these modeling results we propose these models as
phenomenological models of receptive field plasticity during an organism’s life-
time. Finally, due to the success of the same models in multiple sensory areas, we
suggest that these algorithms may provide a constructive realization of the theory,
first proposed by Mountcastle [1], that a qualitatively similar learning algorithm
acts throughout primary sensory cortices.

1 Introduction

Over the last twenty years, researchers have used a number of unsupervised learning algorithms to
model a range of neural phenomena in early sensory processing. These models have succeeded in
replicating many features of simple cell receptive fields in primary visual cortex [2, 3], as well as
cochlear nerve fiber responses in the subcortical auditory system [4]. Though these algorithms do
not perfectly match the experimental data (see [5]), they continue to improve in recent work (e.g.
[6, 7]). However, each phenomenon has generally been fit by a different algorithm, and there has
been little comparison of an individual algorithm’s breadth in simultaneously capturing different
types of data. In this paper we test whether a single learning algorithm can provide a reasonable
fit to data from three different primary sensory cortices. Further, we ask whether such algorithms
can account not only for typical data from normal environments but also for experimental data from
animals raised with drastically different environmental statistics.

Our motivation for exploring the breadth of each learning algorithm’s applicability is partly biolog-
ical. Recent reviews of the experimental literature regarding the functional consequences of plastic-
ity have remarked on the surprising similarity in plasticity outcomes across sensory cortices [8, 9].
These empirical results raise the possibility that a single phenomenological model of plasticity (a
“learning algorithm” in our terminology) might account for receptive field properties independent of
modality. Finding such a model, if it exists, could yield broad insight into early sensory processing
strategies. As an initial step in this direction, we evaluate the match between current unsupervised
learning algorithms and receptive field properties in visual, auditory, and somatosensory cortex. We
find that many current algorithms achieve qualitatively similar matches to receptive field properties
in all three modalities, though differences between the models and experimental data remain.

In the second part of this paper, we examine the sensitivity of these algorithms to changes in their
input statistics. Most previous work that uses unsupervised learning algorithms to explain neural



receptive fields makes no claim about the relative contributions of adaptation on evolutionary as
compared to developmental timescales, but rather models the end point of these complex processes,
that is, the receptive field ultimately measured in the adult animal. In this work, we consider the al-
ternative view that significant adaptation occurs during an organism’s lifetime, i.e., that the learning
algorithm operates predominantly during development rather than over the course of evolution.

One implication of lifetime adaptation is that experimental manipulations of early sensory experi-
ence should result in altered receptive field properties. We therefore ask whether current unsuper-
vised learning algorithms can reproduce appropriately altered receptive field properties in response
to experimentally altered inputs. Our results show that the same unsupervised learning algorithm can
model normal and altered receptive fields, yielding an account of sensory receptive fields focused
heavily on activity dependent plasticity processes operating during an organism’s lifetime.

2 Modeling approach

We use the same three stage processing pipeline to model each modality; the first stage models pe-
ripheral end-receptors, namely rods and cones in the retina, hair cells in the cochlea, and mechanore-
ceptors in glabrous skin; the second stage crudely models subcortical processing as a whitening
transformation of the data; and the third stage models cortical receptive field plasticity mechanisms
as an unsupervised learning algorithm. We note that the first two stages cannot do justice to the
complexities of subcortical processing, and the simple approximation built into these stages limits
the quality of fit we can expect from the models.

We consider five unsupervised learning algorithms: independent component analysis [10], sparse
autoencoder neural networks [11], restricted Boltzmann machines (RBMs) [12], K-means [13], and
sparse coding [2]. These algorithms were chosen on two criteria. First, all of the algorithms share the
property of learning a sparse representation of the input, though they clearly differ in their details,
and have at least qualitatively been shown to yield Gabor-like filters when applied to naturalistic
visual input. Second, we selected algorithms to span a number of reasonable approaches and popular
formalisms, i.e., efficient coding ideas, backpropagation in artificial neural networks, probabilistic
generative models, and clustering methods. As we will show in the rest of the paper, in fact these
five algorithms turn out to yield very similar results, with no single algorithm being decisively better.

Each algorithm contains a number of parameters which control the learning process, which we fit to
the experimental data by performing extensive grid searches through the parameter space. To obtain
an estimate of the variability in our results, we trained multiple models at each parameter setting but
with different randomly drawn datasets and different initial weights. All error bars are the standard
error of the mean. The results reported in this paper are for the best-fitting parameter settings for
each algorithm per modality. We worried that we might overfit the experimental data due to the
large number of models we trained (= 60, 000). As one check against this, we performed a cross-
validation-like experiment by choosing the parameters of each algorithm to maximize the fit to one
modality, and then evaluating the performance of these parameters on the other two modalities. We
found that, though quantitatively the results are slightly worse as expected, qualitatively the results
follow the same patterns of which phenomena are well-fit (see supplementary material). Because
we have fit model parameters to experimental data, we cannot assess the efficiency of the resulting
code. Rather, our aim is to evaluate the single learning algorithm hypothesis, which is orthogonal to
the efficient coding hypothesis. A learning algorithm could potentially learn a non-efficient code, for
instance, but nonetheless describe the establishment of receptive fields seen in adult animals. Details
of the algorithms, parameters, and fitting methods can be found in the supplementary information.
Results from our grid searches are available at http://www.stanford.edu/~asaxe/rf_
plasticity.html.

3 Naturalistic experience and normal receptive field properties

In this section we focus on whether first-order, linear properties of neural responses can be captured
by current unsupervised learning algorithms applied to naturalistic visual, auditory, and somatosen-
sory inputs. Such a linear description of neural responses has been broadly studied in all sensory
cortices [14, 15, 16, 17]. Though a more complete model would incorporate nonlinear components,
these more sophisticated nonlinear models often have as their first step a convolution with a linear
kernel (see [18] for an overview); and it is this kernel which we suggest might be learned over the
course of development, by a qualitatively similar learning algorithm across modalities.
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Figure 1: Top left: K-means bases learned from natural images. Histograms: Black lines show
population statistics for K-means bases, gray bars show V1 simple cell data from Macaque. Far
right: Distribution of receptive field shapes; Red triangles are V1 simple cells from [5], blue circles
are K-means bases.

3.1 Primary visual cortex

A number of studies have shown that response properties in V1 can be successfully modeled using
a variety of unsupervised learning algorithms [2, 19, 3, 12, 10, 6, 7]. We replicate these findings for
the particular algorithms we employ and make the first detailed comparisons to experiment for the
sparse autoencoder, sparse RBM, and K-means algorithms.

Our natural image dataset consists of ten gray scale images of outdoor scenes [2]. Multiple non-
overlapping patches were sampled to form the first stage of our model, meant to approximate the
response of rods and cones. This raw data was then whitened using PCA whitening in the sec-
ond stage of the model, corresponding to retinal ganglion or LGN responses.! These inputs were
supplied to each of the five learning algorithms.

Fig. 1 shows example bases learned by the K-means algorithm. All five algorithms learn localized,
band-pass receptive field structures for a broad range of parameter settings, in qualitative agreement
with the spatial receptive fields of simple cells in primary visual cortex. To better quantify the match,
we compare five properties of model neuron receptive fields to data from macaque V1, namely the
spatial frequency bandwidth, orientation tuning bandwidth, length, aspect ratio, and peak spatial
frequency of the receptive fields. We compare population histograms of these metrics to those
measured in macaque V1 by [14, 15] as reported in [3]. Fig. 1 shows these histograms for the best-
fitting K-means bases according to the average L1 distance between model and data histograms. For
all five algorithms, the histograms show general agreement with the distribution of parameters in
primary visual cortex except for the peak spatial frequency, consistent with the results of previous
studies for ICA and sparse coding [2, 3]. Additional plots for the other algorithms can be found in
the supplementary materials.

Next, we compare the shape of simulated receptive fields to experimentally-derived receptive fields.
As had been done for the experimental data, we fit Gabor functions to our simulated receptive fields
and calculated the “normalized” receptive field sizes n, = o, f and n, = o, f where o, is the
standard deviation of the gaussian envelope along the axis with sinusoidal modulation, o, is the
stardard deviation of the gaussian envelope along the axis in which the filter is low pass, and f is
the frequency of the sinusoid. The parameters n, and n, measure the number of sinusoidal cycles
that fit within an interval of length o, and o, respectively. Hence they capture the number of
excitatory and inhibitory lobes of significant power in each receptive field. The right panel of Fig. 1
shows the distribution of n, and n, for K-means compared to those reported experimentally [5].
The model bases lie within the experimentally derived values, though our models fail to exhibit as
much variability in shape as the experimentally-derived data. As had been noted for ICA and sparse
coding in [5], all five of our algorithms fail to capture low frequency bases near the origin. These
low frequency bases correspond to “blobs” with just a single excitatory region.

!Taking the log of the image intensities before whitening, as in [3], yielded similar fits to V1 data.
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Figure 2: Comparison to Al. Left: RBM bases. Second from left, top: Composite MTF in cat Al,
reproduced from [16]. Bottom: Composite MTF for RBM. Second from right, top: temporal MTF
in Al (dashed gray) and for our model (black). Bottom: spectral MTF. Right, top: frequency sweep
preference. Bottom: Spectrum width vs center frequency for Al neurons (red triangles) and model
neurons (blue circles).

3.2 Primary auditory cortex

In contrast to the large amount of work in the visual system, few efficient coding studies have
addressed response properties in primary auditory cortex (but see [20]). We base our comparison
on natural sound data consisting of a mixture of data from the Pittsburgh Natural Sounds database
and the TIMIT speech corpus. A mix of speech and natural sounds was reported to be necessary
to achieve a good match to auditory nerve fiber responses in previous sparse coding work [4]. We
transform the raw sound waveform into a representation of its frequency content over time meant
to approximate the response of the cochlea [21]. In particular, we pass the input sound signal to a
gammatone filterbank which approximates auditory nerve fiber responses [21]. The energy of the
filter responses is then summed within fixed time-bins at regular intervals, yielding a representation
similar to a spectrogram. We then whiten the data to model subcortical processing. Although there
is evidence for temporal whitening in the responses of afferents to auditory cortex, this is certainly
a very poor aproximation of subcortical auditory processing [16]. After whitening, we applied
unsupervised learning models, yielding the bases shown in Fig. 2 for RBMs. These bases map from
our spectrogram input to the model neuron output, and hence represent the spectrotemporal receptive
field (STRF) of the model neurons.

We then compared properties of our model STRFs to those measured in cortex. First, based on
the experiments reported in O’Connor et al. [22], we analyze the relationship between spectrum
bandwidth and center frequency. O’Connor et al. found a nearly linear relationship between these,
which matches well with the scaling seen in our model bases (see Fig. 2 bottom right). Next we
compared model receptive fields to the composite cortical modulation transfer function reported in
[16]. The modulation transfer function (MTF) of a neuron is the amplitude of the 2D Fourier trans-
form of its STRF. The STRF contains one spectral and one temporal axis, and hence its 2D Fourier
transform contains one spectral modulation and one temporal modulation axis. The composite MTF
is the average of the MTFs computed for each neuron, and for all five algorithms it has a charac-
teristic inverted “V” shape evident in Fig. 2. Summing the composite MTF over time yields the
spectral MTF, which is low-pass for our models and well-matched to the spectral MTF reported in
cat AI[16]. Summing over the spectral dimension yields the temporal MTF, which is low-pass in
our models but band-pass in the experimental data. Finally, we investigate the preference of neurons
for upsweeps in frequency versus downsweeps, which can be cast in terms of the MTF by measuring
the energy in the left half compared to the right half. The difference in these energies normalized
by their sum is the spectrotemporal asymmetry, shown in Fig. 2 top right. All algorithms showed
qualitatively similar distributions of spectrotemporal asymmetry to that found in cat Al. Hence
the model bases are broadly consistent with receptive field properties measured in primary auditory
cortex such as a roughly linear scaling of center frequency with spectrum bandwidth; a low-pass
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Figure 3: Left: Data collection pipeline. Center: Top two rows, sparse autoencoder bases. Bottom
two rows, first six PCA components. Right: Histograms of receptive field structure for the sparse
autoencoder algorithm. Black, model distribution. Gray, experimental data from [17]. (Best viewed
in color)

spectral MTF of appropriate slope; and a similar distribution of spectrotemporal asymmetry. The
models differ from experiment in their temporal structure, which is band-pass in the experimental
data but low-pass in our models.

3.3 Primary somatosensory cortex

Finally, we test whether these learning algorithms can model somatosensory receptive fields on
the hand. To enable this comparison we collected a naturalistic somatosensory dataset meant to
capture the statistics of contact points on the hand during normal primate grasping behavior. A
variety of objects were dusted with fine white powder and then grasped by volunteers wearing blue
latex gloves. To match the natural statistics of primate grasps, we performed the same grip types
in the same proportions as observed ecologically in a study of semi-free ranging Macaca mulatta
[23]. Points of contact were indicated by the transfer of powder to the gloved hand, which was then
placed palm-up on a green background and imaged using a digital camera. The images were then
post-processed to yield an estimate of the pressure applied to the hand during the grasp (Fig. 3, left).

The dataset has a number of limitations: it contains no temporal information, but rather records all
areas of contact for the duration of the grip. Most significantly, it contains only 1248 individual
grasps due to the high effort required to collect such data (~4 minutes/sample), and hence is an
order of magnitude smaller than the datasets used for the vision and auditory analyses. Given these
limitations, we decided to compare our receptive fields to those found in area 3b of primary so-
matosensory cortex. Neurons in area 3b respond to light cutaneous stimulation of restricted regions
of glabrous skin [24], the same sort of contact that would transfer powder to the glove. Area 3b
neurons also receive a large proportion of inputs from slowly adapting mechanoreceptor afferents
with sustained responses to static skin indentation [25], making the lack of temporal information
less problematic.

Bases learned by the algorithms are shown in Fig. 3. These exhibit a number of qualitative features
that accord with the biology. As in area 3b, the model receptive fields are localized to a single digit
[24], and receptive field sizes are larger on the palm than on the fingers [25]. These qualitative
features are not shared by PCA bases, which typically span multiple fingers. As a more quantitative
assesment, we compared model receptive fields on the finger tips to those derived for area 3b neurons
in [17]. We computed the ratio between excitatory and inhibitory area for each basis, and plot a
population histogram of this ratio, shown for the sparse autoencoder algorithm in the right panel of
Fig. 3. Importantly, because this comparison is based on the ratio of the areas, it is not affected by the
unknown scale factor between the dimensions of our glove images and those of the macaque hand.
We also plot the ratio of the excitatory and inhibitory mass, where excitatory and inhibitory mass is
defined as the sum of the positive and negative coefficients in the receptive field, respectively. We
find good agreement for all the algorithms we tested.

5
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4 Adaptation to altered environmental statistics

Numerous studies in multiple sensory areas and species document plasticity of receptive field prop-
erties in response to various experimental manipulations during an organism’s lifetime. In visual
cortex, for instance, orientation selectivity can be altered by rearing animals in unidirectionally ori-
ented environments [26]. In auditory cortex, pulsed-tone rearing results in an expansion in the area
of auditory cortex tuned to the pulsed tone frequency [27]. And in somatosensory cortex, surgically
fusing digits 3 and 4 (the middle and ring fingers) of the hand to induce an artificial digital syndactyly
(webbed finger) condition results in receptive fields that span these digits [28]. In this section we
ask whether the same learning algorithms that explain features of normal receptive fields can also
explain these alterations in receptive field properties due to manipulations of sensory experience.

4.1 Goggle-rearing alters V1 orientation tuning

The preferred orientations of neurons in primary visual cortex can be strongly influenced by altering
visual inputs during development; Tanaka et al. fitted goggles that severly restricted orientation
information to kittens at postnatal week three, and documented a massive overrepresentation of the
goggle orientation subsequently in primary visual cortex [26]. Hsu and Dayan [29] have shown
that an unsupervised learning algorithm, the product-of-experts model (closely related to ICA), can
reproduce aspects of the goggle-rearing experiment. Here we follow their methods, extending the
analysis to the other four algorithms we consider.

To simulate the effect of the goggles on an input image, we compute the 2D Fourier transform of
the image and remove all energy except at the preferred orientation of the goggles. We slightly
blur the resulting image with a small Gaussian filter. Because the kittens receive some period of
natural experience, we trained the models on mixtures of patches from natural and altered images,
adding one parameter in addition to the algorithmic parameters. Fig. 4 shows resulting receptive
fields obtained using the sparse coding algorithm. After learning, the preferred orientations of the
bases were derived using the analysis described in Section 3.1. All five algorithms demonstrated an
overrepresentation of the goggle orientation, consistent with the experimental data.

4.2 Pulsed-tone rearing alters A1 frequency tuning

Early sensory experience can also profoundly alter properties of neural receptive fields in primary
auditory cortex. Along similar lines to the results for V1 in Section 4.1, early exposure to a pulsed
tone can induce shifts in the preferred center frequency of Al neurons. In particular, de Villers-
Sidani et al. raised rats in an environment with a free field speaker emitting a tone with 40Hz ampli-
tude modulation that repeatedly cycled on for 250ms then off for 500ms [27]. Mapping the preferred
center frequencies of neurons in tone-exposed rats revealed a corresponding overrepresentation in
Al around the pulsed-tone frequency.

We instantiated this experimental paradigm by adding a pulsed tone to the raw sound waveforms
of the natural sounds and speech before computing the gammatone responses. Example bases for
ICA are shown in the center panel of Fig. 5, many of which are tuned to the pulsed-tone frequency.
We computed the preferred frequency of each model receptive field by summing the square of each
patch along the temporal dimension. The right panel of Fig. 5 shows population histograms of the
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Figure 5: Left: Example spectrograms before and after adding a 4kHz pulsed tone. Center: ICA
bases learned from pulsed tone data. Right: Population histograms of preferred frequency reveal a
strong preference for the pulsed-tone frequency of 4kHz.

preferred center frequencies for models trained on natural and pulsed-tone data for ICA and K-
means. We find that all algorithms show an overrepresentation in the frequency band containing the
tone, in qualitative agreement with the results reported in [27]. Intuitively, this overrepresentation
is due to the fact that many bases are necessary to represent the temporal information present in
the pulsed-tone, that is, the phase of the amplitude modulation and the onset or offset time of the
stimulus.

4.3 Artificial digital syndactyly in S1

Allard et al. [28] surgically fused adjacent skin on
digits 3 and 4 in adult owl monkeys to create an ar-
tificial sydactyly, or webbed finger, condition. After
14, 25, or 33 weeks, many receptive fields of neu-
rons in area 3b of S1 were found to span digits 3
and 4, a qualitative change from the normally strict
localization of receptive fields to a single digit. Ad-
ditionally, at the tips of digits 3 and 4 where there
is no immediately adjacent skin on the other digit,
some neurons showed discontinuous double-digit re-
ceptive fields that responded to stimulation on either
finger tip [28]. In contrast to the shifts in receptive
field properties described in the preceding two sec-
tions, these striking changes are qualitatively differ-
ent, and as such provide an important test for functional models of plasticity.

(5(z
C3(3
(33
(B3

Figure 6: Bases trained on artificial syn-
dactyly data. Top row: Sparse coding. Bot-
tom row: K-means.

We modeled the syndactyly condition by fusing digits 3 and 4 of our gloves and collecting 782 ad-
ditional grip samples according to the method in Section 3.3. Bases learned from this syndactyly
dataset are shown in Fig. 4.3. All models learned double-digit receptive fields that spanned digits
3 and 4, in qualitative agreement with the findings reported in [28]. Additionally, a small number
of bases contained discontinuous double-digit receptive fields consisting of two well-separated ex-
citatory regions on the extreme finger tips (e.g., Fig. 4.3 top right). In contrast to the experimental
findings, model receptive fields spanning digits 3 and 4 also typically have a discontinuity along the
seam. We believe this reflects a limitation of our dataset; although digits 3 and 4 of our data collec-
tion glove are fused together and must move in concert, the seam between these digits remains inset
from the neighboring fingers, and hence grasps rarely transfer powder to this area. In the experiment,
the skin was sutured to make the seam flush with the neighboring fingers.

5 Discussion

Taken together, our results demonstrate that a number of unsupervised learning algorithms can ac-
count for certain normal and altered linear receptive field properties across multiple primary sensory
cortices. Each of the five algorithms we tested obtained broadly consistent fits to experimental data
in V1, Al and S1. Although these fits were not perfect—notably, missing “blob” receptive fields
in V1 and bandpass temporal structure in Al-they demonstrate the feasibility of applying a single
learning algorithm to experimental data from multiple modalities.



In no setting did one of our five algorithms yield qualitatively different results from any other. This
finding likely reflects the underlying similarities between the algorithms, which all attempt to find
a sparse representation of the input while preserving information about it. The relative robustness
of our results to the details of the algorithms offers one explanation of the empirical observation of
similar plasticity outcomes at a functional level despite potentially very different underlying mech-
anisms [8]. Even if the mechanisms differ, provided that they still incorporate some version of
sparsity, they can produce qualitatively very similar outcomes.

The success of these models in capturing the effects of experimental manipulations of sensory input
suggests that the adaptation of receptive field properties to natural statistics, as proposed by efficient
coding models, may occur significantly on developmental timescales. If so, this would allow the
extensive literature on plasticity to constrain further modeling efforts.

Furthermore, the ability of a single algorithm to capture responses in multiple sensory cortices shows
that, in principle, a qualitatively similar plasticity process could operate throughout primary sensory
cortices. Experimentally, such a possibility has been addressed most directly by cortical “rewiring”
experiments, where visual input is rerouted to either auditory or somatosensory cortex [30, 31, 32,
33, 34, 35]. In neonatal ferrets, visual input normally destined for lateral geniculate nucleus can
be redirected to the auditory thalamus, which then projects to primary auditory cortex. Roe et
al. [32] and Sharma et al. [34] found that rewired ferrets reared to adulthood had neurons in auditory
cortex responsive to oriented edges, with orientation tuning indistinguishable from that in normal
V1. Further, Von Melchner et al. [33] found that rewired auditory cortex can mediate behavior such
as discriminating between different grating stimuli and navigating toward a light source. Rewiring
experiments in hamster corroborate these results, and in addition show that rewiring visual input to
somatosensory cortex causes S1 to exhibit light-evoked responses similar to normal V1 [31, 35].
Differences between rewired and normal cortices do exist—for example, the period of the orientation
map is larger in rewired animals [34]. However, these experiments are consistent with the hypothesis
that sensory cortices share a common learning algorithm, and that it is through activity dependent
development that they specialize to a specific modality. Our results provide a possible explanation
of these experiments, as we have shown constructively that the exact same algorithm can produce
V1-, Al-, or S1-like receptive fields depending on the type of input data it receives.
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