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Abstract

Although discriminatively trained classifiers are usuallymore accurate
when labeled training data is abundant, previous work has shown that
when training data is limited, generative classifiers can out-perform
them. This paper describes a hybrid model in which a high-dimensional
subset of the parameters are trained to maximize generativelikelihood,
and another, small, subset of parameters are discriminatively trained to
maximize conditional likelihood. We give a sample complexity bound
showing that in order to fit the discriminative parameters well, the num-
ber of training examples required depends only on the logarithm of the
number of feature occurrences and feature set size. Experimental results
show that hybrid models can provide lower test error and can produce
better accuracy/coverage curves than either their purely generative or
purely discriminative counterparts. We also discuss several advantages
of hybrid models, and advocate further work in this area.

1 Introduction

Generative classifiers learn a model of the joint probability, p(x, y), of the inputsx and
the labely, and make their predictions by using Bayes rule to calculatep(y|x), and then
picking the most likely labely. In contrast, discriminative classifiers model the posterior
p(y|x) directly. It has often been argued that for many applicationdomains, discriminative
classifiers often achieve higher test set accuracy than generative classifiers (e.g., [6, 4, 14]).
Nonetheless, generative classifiers also have several advantages, among them straightfor-
ward EM methods for handling missing data, and often better performance when training
set sizes are small. Specifically, it has been shown that a simple generative classifier (naive
Bayes) outperforms its conditionally-trained, discriminative counterpart (logistic regres-
sion) when the amount of available labeled training data is small [11].
In an effort to obtain the best of both worlds, this paper explores a class of hybrid models
for supervised learning that are partly generative and partly discriminative. In these models,
a large subset of the parameters are trained to maximize the generative, joint probability
of the inputs and outputs of the supervised learning task; another, much smaller, subset of
the parameters are discriminatively trained to maximize the conditional probability of the
outputs given the inputs.
Motivated by an application in text classification as well asa desire to begin by exploring a
simple, pure form of hybrid classification, we describe and give results with a “generative-
discriminative” pair [11] formed by naive Bayes and logistic regression, and a hybrid al-



gorithm based on both. We also give two natural by-products of the hybrid model: First, a
scheme for allowing different partitions of the variables to contribute more or less strongly
to the classification decision—for an email classification example, modeling the text in
the subject line and message body separately, with learned weights for the relative contri-
butions. Second, a method for improving accuracy/coveragecurves of models that make
incorrect independence assumptions, such as naive Bayes.
We also prove a sample complexity result showing that the number of training examples
needed to fit the discriminative parameters depends only on the logarithm of the vocabulary
size and document length. In experimental results, we show that the hybrid model achieves
significantly more accurate classification than either its purely generative or purely discrim-
inative counterparts. We also demonstrate that the hybrid model produces class posterior
probabilities that better reflect empirical error rates, and as a result produces improved
accuracy/coverage curves.

2 The Model

We begin by briefly reviewing the multinomial naive Bayes classifier applied to text cate-
gorization [10], and then describe our hybrid model and its relation to logistic regression.
Let Y = {0, 1} be the set of possible labels for a document classification task, and let
W = {w1, w2, . . . , w|W|} be a dictionary of words. A document ofN words is represented
by a vectorX = (X1,X2, . . . ,XN ) of lengthN . Theith word in the document isXi ∈ W.
Note thatN can vary for different documents. The multinomial naive Bayes model assumes
that the labelY is chosen from some prior distributionP (Y = ·), the lengthN is drawn
from some distributionP (N = ·) independently of the label, and each wordXi is drawn
independently from some distributionP (W = ·|Y ) over the dictionary. Thus, we have:1

P (X = x, Y = y) = P (Y = y)P (N = n)
∏n

i=1 P (W = xi|Y = y). (1)

Since the lengthn of the document does not depend on the label and therefore does not
play a significant role, we leave it out of our subsequent derivations.

The parameters in the naive Bayes model areP̂ (Y ) andP̂ (W |Y ) (our estimates ofP (Y )
andP (W |Y )). They are set to maximize the joint (penalized) log-likelihood of thex and
y pairs in a labeled training set,M = {(x(i), y(i))}m

i=1. Let n(i) be the length of document
x(i). Specifically, for anyk ∈ {0, 1}, we have:

P̂ (Y = k) = 1
m

∑m

i=1 1{y(i) = k} (2)

P̂ (W = wl|Y = k) =

∑
m

i=1

∑
n(i)

j=1
1{x

(i)
j

=wl, y(i)=k}+1
∑

m

i=1
n(i)1{y(i)=k}+|W|

, (3)

where1{·} is the indicator function (1{True} = 1, 1{False} = 0), and we have applied
Laplace (add-one) smoothing in obtaining the estimates of the word probabilities. Using
Bayes rule, we obtain the estimated class posterior probabilities for a new documentx as:

P̂ (Y = 1|X = x) = P̂ (X=x|Y =1)P̂ (Y =1)∑
y∈Y

P̂ (X=x|Y =y)P̂ (Y =y)

where
P̂ (X = x|Y = y) =

∏n

i=1 P̂ (W = xi|Y = y). (4)

The predicted class for the new document is then simplyarg maxy∈Y P̂ (Y = y|X = x).
In many text classification applications, the documents involved consist of several disjoint
regions that may have different dependencies with the document label. For example, a
USENET news posting includes both a subject region and a message body region.2 Because

1We adopt the notational convention that upper-case is used to denote random variables, and
lower-case is used to denote particular values taken by the random variables.

2Other possible text classification examples include: Emails consisting of subject and body; tech-
nical papers consisting of title, abstract, and body; web pages consistingof title, headings, and body.



of the strong assumptions used by naive Bayes, it treats the words in the different regions
of a document in exactly the same way, ignoring the fact that perhaps words in a particular
region (such as words in the subject) might be more “important.” Further, it also tends to
allow the words in the longer region to dominate. (Explainedbelow.)
In the sequel, we assume that every input documentX can be naturally divided intoR
regionsX1,X2, . . . ,XR. Note thatR can be one. The regions are of variable lengths
N1, N2, . . . , NR. For the sake of conciseness and clarity, in the following discussion we
will focus on the case ofR = 2 regions, the generalization offering no difficulties. Thus,
the document probability in Equation (4) is now replaced with:

P̂ (X = x|Y = y) = P̂ (X1 = x1|Y = y)P̂ (X2 = x2|Y = y) (5)

=
∏n1

i=1 P̂ (W = x1
i |Y = y)

∏n2

i=1 P̂ (W = x2
i |Y = y) (6)

Here,xj
i denotes theith word in thejth region. Naive Bayes will predicty = 1 if:

∑n1

i=1 log P̂ (W = x1
i |Y = 1) +

∑n2

i=1 log P̂ (W = x2
i |Y = 1) + log P̂ (Y = 1) ≥

∑n1

i=1 log P̂ (W = x1
i |Y = 0) +

∑n2

i=1 log P̂ (W = x2
i |Y = 0) + log P̂ (Y = 0)

and predicty = 0 otherwise. In an email or USENET news classification problem, if
the first region is the subject, and the second region is the message body, thenn2 � n1,
since message bodies are usually much longer than subjects.Thus, in the equation above,
the message body contributes to many more terms in both the left and right sides of the
summation, and the result of the “≥” test will be largely determined by the message body
(with the message subject essentially ignored or otherwisehaving very little effect).
Given the importance and informativeness of message subjects, this suggests that we might
obtain better performance than the basic naive Bayes classifier by considering a modified
algorithm that assigns different “weights” to different regions, and normalizes for region
lengths. Specifically, consider making a prediction using the modified inequality test:
θ1

n1

∑n1

i=1 log P̂ (W = x1
i |Y = 1) + θ2

n2

∑n2

i=1 log P̂ (W = x2
i |Y = 1) + log P̂ (Y = 1) ≥

θ1

n1

∑n1

i=1 log P̂ (W = x1
i |Y = 0) + θ2

n2

∑n2

i=1 log P̂ (W = x2
i |Y = 0) + log P̂ (Y = 0)

Here, the vector of parametersθ = (θ1, θ2) controls the relative “weighting” between the
message subjects and bodies, and will be fit discriminatively. Specifically, we will model
the class posteriors, which we denote byP̂θ to make explicit the dependence onθ, as:3

P̂θ(y|x) = P̂ (y)P̂ (x1|y)
θ1
n1 P̂ (x2|y)

θ2
n2

P̂ (Y =0)P̂ (x1|Y =0)
θ1
n1 P̂ (x2|Y =0)

θ2
n2 +P̂ (Y =1)P̂ (x1|Y =1)

θ1
n1 P̂ (x2|Y =1)

θ2
n2

(7)

We had previously motivated our model as assigning different weights to different parts of
the document. A second reason for using this model is that theindependence assumptions
of naive Bayes are too strong. Specifically, with a document of lengthn, the classifier “as-
sumes” that it hasn completely independent pieces of evidence supporting its conclusion
about the document’s label. Puttingnr in the denominator of the exponent as a normal-
ization factor can be viewed as a way of counteracting the overly strong independence
assumptions.4

After some simple manipulations, we obtain the following expression forP̂θ(Y = 1|x):

P̂θ(Y = 1|x) = 1
1+exp(−a−θ1b1−...−θRbR) (8)

wherea = log P̂ (Y =1)

P̂ (Y =0)
andbr = 1

nr
(log P̂ (xr|Y =1)

P̂ (xr|Y =0)
). With this expression for̂Pθ(y|x), we

see that it is very similar to the form of the class posteriorsused by logistic regression, the

3When there is no risk of ambiguity, we will sometimes replaceP (X = x|Y = y), P (Y =
y|X = x), P (W = xi|Y = y), etc. withP (x|y), P (y|x), P (xi|y).

4θr can also be viewed as an “effective region length” parameter, where we assume that regionr
of the document can be treated as onlyθr independent pieces of observation. For example, note that
if each regionr of the document hasθr words exactly, then this model reduces to naive Bayes.



only difference being that in this casea is a constant calculated from the estimated class
priors. To make the parallel to logistic regression complete, we defineb0 = 1, redefineθ
asθ = (θ0, θ1, θ2), and define a new class posterior

P̂θ(Y = 1|x) = 1
1+exp(−θT b)

(9)

Throughout the derivation, we had assumed that the parameters P̂ (x|y) were fit gener-
atively as in Equation (3) (andb is in turn derived from these parameters as described
above). It therefore remains only to specify howθ is chosen. One method would be to pick
θ by maximizing the conditional log-likelihood of the training setM = {x(i), y(i)}m

i=1:

θ = arg maxθ′

∑m

i=1 log P̂θ′(y(i)|x(i)) (10)

However, the word generation probabilities that were used to calculateb were also trained
from the training setM . This procedure therefore fits the parametersθ to the training
data, using “features”b that were also fit to the data. This leads to a biased estimator.
Specifically, since what we care about is the generalizationperformance of the algorithm,
a better method is to pickθ to maximize the log-likelihood of data that wasn’t used to
calculate the “features”b, because when we see a test example, we will not have had the
luxury of incorporating information from the test example into theb’s (cf. [15, 12]). This
leads to the following “leave-one-out” strategy of pickingθ:

θ = arg maxθ′

∑m

i=1 log P̂θ′,−i(y
(i)|x(i)), (11)

whereP̂
θ̂,−i

(y(i)|x(i)) is as given in Equation (9), except that eachbr is computed from
word generation probabilities that were estimated with theith example of the training set
held out. We note that optimizing this objective to findθ is still the same optimization
problem as in logistic regression, and hence is convex and can be solved efficiently. Fur-
ther, the word generation probabilities with theith example left out can also be computed
efficiently.5

The predicted label for a new document under this method isarg maxy∈Y P̂θ(y|x). We
call this method thenormalized hybridalgorithm. For the sake of comparison, we will also
consider an algorithm in which the exponents in Equation (7)are not normalized bynr.
In other words, we replaceθr/nr there by justθr. We refer to this latter method as the
unnormalized hybridalgorithm.

3 Experimental Results

We now describe the results of experiments testing the effectiveness of our methods. All
experiments were run using pairs of newsgroups from the 20newsgroups dataset [8] of
USENET news postings. When parsing this data, we skipped everythingin the USENET
headers except the subject line; numbers and email addresses were replaced by special
tokens NUMBER and EMAILADDR; and tokens were formed after stemming.
In each experiment, we compare the performance of the basic naive Bayes algorithm with
that of the normalized hybrid algorithm and logistic regression with Gaussian priors on the
parameters. We used logistic regression with word-counts in the feature vectors (as in [6]),
which forms a discriminative-generative pair with multinomial naive Bayes. All results
reported in this section are averages over 10 random train-test splits.
Figure 1 plots learning curves for the algorithms, when usedto classify between various
pairs of newsgroups. We find that in every experiment, for thetraining set sizes considered,
the normalized hybrid algorithm withR = 2 has test error that is either the lowest or very
near the lowest among all the algorithms. In particular, it almost always outperforms the

5Specifically, by precomputing the numerator and denominator of Equation(3), we can later
remove any example by subtracting out the terms in the numerator and denominator corresponding
to that example.



0 500 1000 1500
0.2

0.25

0.3

0.35

0.4

size of training set

te
st

 e
rr

or

atheism vs religion.misc

0 500 1000 1500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

size of training set

te
st

 e
rr

or

pc.hardware vs mac.hardware

0 500 1000 1500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

size of training set

te
st

 e
rr

or

graphics vs mideast

(a) (b) (c)

0 500 1000 1500
0

0.05

0.1

0.15

0.2

size of training set

te
st

 e
rr

or

atheism vs sci.med

0 500 1000 1500
0

0.05

0.1

0.15

0.2

size of training set

te
st

 e
rr

or

autos vs motorcycles

0 500 1000 1500
0

0.02

0.04

0.06

0.08

size of training set

te
st

 e
rr

or

hockey vs christian

(d) (e) (f)

Figure 1: Plots of test error vs training size for several different newsgroup pairs. Red
dashed line is logistic regression; blue dotted line is standard naive Bayes; black solid line
is the hybrid algorithm. (Colors where available.) (If moretraining data were available,
logistic regression would presumably out-perform naive Bayes; cf. [6, 11].)

basic naive Bayes algorithm. The difference in performanceis especially dramatic for small
training sets.
Although these results are not shown here, the hybrid algorithm with R = 2 (breaking the
document into two regions) outperformsR = 1. Further, the normalized version of the
hybrid algorithm generally outperforms the unnormalized version.

4 Theoretical Results

In this section, we give a distribution free uniform convergence bound for our algorithm.
Classical learning and VC theory indicates that, given a discriminative model with a small
number of parameters, typically only a small amount of training data should be required
to fit the parameters “well” [14]. In our model, a large numberof parameterŝP are fit
generatively, but only a small number (theθ’s) are fit discriminatively. We would like
to show that only a small training set is required to fit the discriminative parametersθ.6

However, standard uniform convergence results do not applyto our problem, because the
“features”bi given to the discriminative logistic regression componentalso depend on the
training set. Further, theθi’s are fit using the leave-one-out training procedure, so that every
pair of training examples is actually dependent.
For our analysis, we assume the training set of sizem is drawni.i.d.from some distribution
D over X × Y. Although not necessary, for simplicity we assume that eachdocument
has the same total number of wordsn =

∑R

i=1 ni, though the lengths of the individual
regions may vary. (It also suffices to have an upper- and a lower-bound on document
length.) Finally, we also assume that each word occurs at most Cmax times in a single
document, and that the distributionD from which training examples are drawn satisfies

6For a result showing that naive Bayes’ generatively fit parameters (albeit one using a different
event model) converge to their population (asymptotic) values after a number of training examples
that depends logarithmically on the size of the number of features, also see [11].



ρmin ≤ P (Y = 1) ≤ 1 − ρmin, for some fixedρmin > 0.
Note that we donotassume that the “naive Bayes assumption” (that words are conditionally
independent given the class label) holds. Specifically, even when the naive Bayes assump-
tion does not hold, the naive Bayesalgorithm(as well as our hybrid algorithm) can still be
applied, and our results apply to this setting.
Given a setM of m training examples, for a particular setting of the parameter θ, the
expected log likelihood of a randomly drawn test example is:

εM (θ) = E(x,y)∼D log P̂θ(y|x) (12)

whereP̂θ is the probability model trained onM as described in the previous section, using
parameterŝP fit to the entire training set. Our algorithm uses a leave-one-out estimate of
the true log likelihood; we call this the leave-one-out log likelihood:

ε̂M
−1(θ) = 1

m

∑m

i=1 log P̂θ,−i(y
(i)|x(i)) (13)

whereP̂θ,−i represents the probability model trained with theith example left out.

We would like to chooseθ to maximizeεM , but we do not knowεM . Now, it is well-known
that if we have some estimatêε of a generalization error measureε, and if|ε̂(θ)−ε(θ)| ≤ ε
for all θ, then optimizingε̂ will result in a value forθ that comes within2ε of the best
possible value forε [14]. Thus, in order to show that optimizinĝεM

−1 is a good “proxy” for
optimizingεM , we only need to show that̂εM

−1(θ) is uniformly close toεM (θ). We have:

Theorem 1 Under the previous set of assumptions, in order to ensure that with probability
at least1 − δ, we have|εM (θ) − ε̂M

−1(θ)| < ε for all parametersθ such that||θ||∞ ≤ η, it
suffices thatm = O(poly(1/δ, 1/ε, log n, log |W|, R, η)R).

The full proof of this result is fairly lengthy, and is deferred to the full version of this
paper [13]. From the theorem, the number of training examples m required to fit theθ
parameters (under the fairly standard regularity condition thatθ be bounded) depends only
on the logarithms of the document lengthn and the vocabulary size|W|. In our bound,
there is an exponential dependence onR; however, from our experience,R does not need
to be too large for significantly improved performance. In fact, our experimental results
demonstrate good performance forR = 2.

5 Calibration Curves

We now consider a second application of these ideas, to a textclassification setting where
the data is not naturally split into different regions (equivalently, whereR = 1). In this
setting we cannot use the “reweighting” power of the hybrid algorithm to reduce classifi-
cation error. But, we will see that, by giving better class posteriors, our method still gives
improved performance as measured on accuracy/coverage curves.
An accuracy/coverage curve shows the accuracy (fraction correct) of a classifier if it is
asked only to providex% coverage—that is, if it is asked only to label thex% of the test
data on which it is most confident. Accuracy/coverage curvestowards the upper-right of the
graph mean high accuracy even when the coverage is high, and therefore good performance.
Accuracy value at coverage 100% is just the normal classification error. In settings where
both human and computer label documents, accuracy/coverage curves play a central role
in determining how much data has to be labeled by humans. Theyare also indicative of
the quality of a classifier’s class posteriors, because a classifier with better class posteriors
would be able to better judge whichx% of the test data it should be most confident on, and
achieve higher accuracy when it chooses to label thatx% of the data.
Figure 2 shows accuracy/coverage curves for classifying several pairs of newsgroups from
the 20newsgroups dataset. Each plot is obtained by averaging the results of ten 50%/50%
random train/test splits. The normalized hybrid algorithm(R = 1) does significantly better
than naive Bayes, and has accuracy/coverage curves that arehigher almost everywhere.
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Figure 2: Accuracy/Coverage curves for different newsgroups pairs. Black solid line is
our normalized hybrid algorithm withR = 1; magenta dash-dot line is naive Bayes; blue
dotted line is unnormalized hybrid, and red dashed line is logistic regression. (Colors where
available.)

For example, in Figure 2a, the normalized hybrid algorithm with R = 1 has a coverage
of over 40% at 95% accuracy, while naive Bayes’ coverage is 0 for the same accuracy.
Also, the unnormalized algorithm has performance about thesame as naive Bayes. Even in
examples where the various algorithms have comparable overall test error, the normalized
hybrid algorithm has significantly better accuracy/coverage.

6 Discussion and Related Work

This paper has described a hybrid generative/discriminative model, and presented experi-
mental results showing that a simple hybrid model can perform better than either its purely
generative or discriminative counterpart. Furthermore, we showed that in order to fit the
parametersθ of the model, only a small number of training examples is required.
There have been a number of previous efforts to modify naive Bayes to obtain more em-
pirically accurate posterior probabilities. Lewis and Gale [9] use logistic regression to re-
calibrate naive Bayes posteriors in an active learning task. Their approach is similar to the
lower-performingunnormalizedversion of our algorithm, with only one region. Bennett [1]
studies the problem of using asymmetric parametric models to obtain high quality proba-
bility estimates from the scores outputted by text classifiers such as naive Bayes. Zadrozny
and Elkan [16] describe a simple non-parametric method for calibrating naive Bayes prob-
ability estimates. While these methods can obtain good classposteriors, we note that in
order to obtain better accuracy/coverage, it is not sufficient to take naive Bayes’ output
p(y|x) and find a monotone mapping from that to a set of hopefully better class posteriors
(e.g., [16]). Specifically, in order to obtain better accuracy/coverage, it is also important to
rearrangethe confidence orderings that naive Bayes gives to documents(which our method
does because of the normalization).
Jaakkola and Haussler [3] describe a scheme in which the kernel for a discriminative clas-
sifier is extracted from a generative model. Perhaps the closest to our work, however, is



the commonly-used, simple “reweighting” of the language model and acoustic model in
speech recognition systems (e.g., [5]). Each of the two models is trained generatively; then
a single weight parameter is set using hold-out cross-validation.
In related work, there are also a number of theoretical results on the quality of leave-one-
out estimates of generalization error. Some examples include [7, 2]. (See [7] for a brief
survey.) Those results tend to be for specialized models or have strong assumptions on the
model, and to our knowledge do not apply to our setting, in which we are also trying to fit
the parametersθ.
In closing, we have presented one hybrid generative/discriminative algorithm that appears
to do well on a number of problems. We suggest that future research in this area is poised
to bear much fruit. Some possible future work includes: automatically determining which
parameters to train generatively and which discriminatively; training methods for more
complex models with latent variables, that require EM to estimate both sets of parameters;
methods for taking advantage of the hybrid nature of these models to better incorporate
domain knowledge; handling missing data; and support for semi-supervised learning.
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