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Abstract

Although discriminatively trained classifiers are usuatigre accurate
when labeled training data is abundant, previous work hasshhat
when training data is limited, generative classifiers catrpauform
them. This paper describes a hybrid model in which a highedisional
subset of the parameters are trained to maximize genetigligiood,
and another, small, subset of parameters are discrimahatikained to
maximize conditional likelihood. We give a sample compigxiound
showing that in order to fit the discriminative parameterd vilee num-
ber of training examples required depends only on the Idgarbf the
number of feature occurrences and feature set size. Expetairesults
show that hybrid models can provide lower test error and cadyce
better accuracy/coverage curves than either their pureheative or
purely discriminative counterparts. We also discuss s¢atvantages
of hybrid models, and advocate further work in this area.

1 Introduction

Generative classifiers learn a model of the joint probabilitx, ), of the inputsz and
the labely, and make their predictions by using Bayes rule to calcyl&gér), and then
picking the most likely label,. In contrast, discriminative classifiers model the posteri
p(y|x) directly. It has often been argued that for many applicatiomains, discriminative
classifiers often achieve higher test set accuracy tharrggreeclassifiers (e.g., [6, 4, 14]).
Nonetheless, generative classifiers also have severahtadyes, among them straightfor-
ward EM methods for handling missing data, and often beteiopmance when training
set sizes are small. Specifically, it has been shown that glsigenerative classifier (naive
Bayes) outperforms its conditionally-trained, discriative counterpart (logistic regres-
sion) when the amount of available labeled training datanialls[11].

In an effort to obtain the best of both worlds, this paper esgd a class of hybrid models
for supervised learning that are partly generative andypdigcriminative. In these models,
a large subset of the parameters are trained to maximizeatherative, joint probability
of the inputs and outputs of the supervised learning tasbthen, much smaller, subset of
the parameters are discriminatively trained to maximizedbnditional probability of the
outputs given the inputs.

Motivated by an application in text classification as welbatesire to begin by exploring a
simple, pure form of hybrid classification, we describe aive gesults with a “generative-
discriminative” pair [11] formed by naive Bayes and logistegression, and a hybrid al-



gorithm based on both. We also give two natural by-productiseohybrid model: First, a
scheme for allowing different partitions of the variablesontribute more or less strongly
to the classification decision—for an email classificatioaraple, modeling the text in
the subject line and message body separately, with leareaghtg for the relative contri-
butions. Second, a method for improving accuracy/covecagees of models that make
incorrect independence assumptions, such as naive Bayes.

We also prove a sample complexity result showing that thebmurof training examples
needed to fit the discriminative parameters depends onlgelogarithm of the vocabulary
size and document length. In experimental results, we shatttie hybrid model achieves
significantly more accurate classification than eitherutefy generative or purely discrim-
inative counterparts. We also demonstrate that the hybodetnproduces class posterior
probabilities that better reflect empirical error ratesd as a result produces improved
accuracy/coverage curves.

2 The Model

We begin by briefly reviewing the multinomial naive Bayesssiéier applied to text cate-
gorization [10], and then describe our hybrid model andatation to logistic regression.
Let Y = {0,1} be the set of possible labels for a document classificatisk, @nd let
W = {w1,wy, ..., w)yy} be adictionary of words. A document df words is represented
by avectorX = (X3, Xs,..., Xn) oflengthN. Theith word in the document iX; € W.
Note that/V can vary for different documents. The multinomial naive 8aynodel assumes
that the labell” is chosen from some prior distributid?d(Y” = -), the lengthV is drawn
from some distributionl®( N = -) independently of the label, and each wo¥gdis drawn
independently from some distributid®(WW = -|Y") over the dictionary. Thus, we have:

P(X=2Y=y)=PY =y)P(N =n)[[_, PW =z;[Y =y). Q)
Since the lengtn of the document does not depend on the label and therefoerdite
play a significant role, we leave it out of our subsequentdédns.

The parameters in the naive Bayes model&(& ) and P(W|Y') (our estimates oP(Y")
and P(W|Y)). They are set to maximize the joint (penalized) log-likebd of thex and
y pairs in a labeled training set/ = {(z®, 5} . Letn® be the length of document
=), Specifically, for any: € {0, 1}, we have:

PY =k) = 530 1y =k} (2)

L e —un k)1 X

S Oy O=ky ] 3)
wherel{-} is the indicator functionl{ True} = 1, 1{False} = 0), and we have applied
Laplace (add-one) smoothing in obtaining the estimateb@fitord probabilities. Using

Bayes rule, we obtain the estimated class posterior pritiadifor a new document as:

S _ oy P(X=aly=1)P(y=1)
PY=1X=1x)= S o PX=2[Y=y)P(¥=y)

PW=w|Y =k) =

where ) .

P(X =zlY =y) = [}, PW = zi]Y =y). (4)
The predicted class for the new document is then simaplymax,cy P(Y = y|X = x).
In many text classification applications, the documentslived consist of several disjoint

regions that may have different dependencies with the deatitabel. For example, a
USENET news posting includes both a subject region and a messagedmidn? Because

We adopt the notational convention that upper-case is used to dend@nramriables, and
lower-case is used to denote particular values taken by the randomleariab

20ther possible text classification examples include: Emails consisting jefcsand body; tech-
nical papers consisting of title, abstract, and body; web pages consistitlg, headings, and body.



of the strong assumptions used by naive Bayes, it treats théswn the different regions
of a document in exactly the same way, ignoring the fact teebgps words in a particular
region (such as words in the subject) might be more “impaoitdfurther, it also tends to
allow the words in the longer region to dominate. (Explaibetbw.)

In the sequel, we assume that every input docundérdan be naturally divided int@
regionsX', X2, ..., X", Note thatR can be one. The regions are of variable lengths
N1, Ns, ..., Ng. For the sake of conciseness and clarity, in the followirsga$sion we
will focus on the case oRR = 2 regions, the generalization offering no difficulties. Thus
the document probability in Equation (4) is now replacedwit

P(X=azlY =y) = P(X'=a'lY =y)P(X? =2?]Y =y) ()
=TI, PW =al|y = y)[[[2, POW =23V =y)  (6)
Here,z] denotes théth word in thejth region. Naive Bayes will predigt = 1 if:
S log P(W = 2|V = 1) + 372 log P(W = 22|V = 1) +log P(Y = 1) >

St log P(W =2}y =0) + 512, log P(W = 22|Y = 0) + log P(Y = 0)
and predicty = 0 otherwise. In an email or 8ENET news classification problem, if
the first region is the subject, and the second region is tresage body, theny > ny,
since message bodies are usually much longer than subjéuts, in the equation above,
the message body contributes to many more terms in both thané right sides of the
summation, and the result of the-" test will be largely determined by the message body
(with the message subject essentially ignored or othermaseng very little effect).

Given the importance and informativeness of message gabjbis suggests that we might
obtain better performance than the basic naive Bayes fitadsy considering a modified

algorithm that assigns different “weights” to differengiens, and normalizes for region
lengths. Specifically, consider making a prediction ushegrodified inequality test:

le S log P(W =}y =1) + & 23 log P(W = 22|Y = 1) +log P(Y = 1) >
2—11 >t log P(W =zl|y =0) + Z—Z oz log P(W = 22|y = 0) + log P(Y =0)

Here, the vector of parametets= (6, 6>) controls the relative “weighting” between the
message subjects and bodies, and will be fit discrimingtiv@becifically, we will model

the class posteriors, which we denotefyto make explicit the dependence éras?

1 1 n 7L
Py(ylz) = o LWPEY) T Py @
P(Y=0) (& [Y=0) T P&y —0) ™ + Py =) P(al [y =)™ P(a?]y=1)75

We had previously motivated our model as assigning diffenesights to different parts of
the document. A second reason for using this model is thahttependence assumptions
of naive Bayes are too strong. Specifically, with a documétargthn, the classifier “as-
sumes” that it has completely independent pieces of evidence supportingpitslasion
about the document’s label. Puttimg in the denominator of the exponent as a normal-
ization factor can be viewed as a way of counteracting thelypwtrong independence
assumption$.

After some simple manipulations, we obtain the followingeession forP (Y = 1|x):

PQ(Y: 1|:E) = 1+exp( a— Hllblf...fGRbR) (8)
wherea = log an = og = ——— ). With this expression OAg ylx), we
h 1 PEY 1) db, = L(1 PE :§ (1)> With thi ion fof,

see that it is very similar to the form of the class postenigad by logistic regression, the

3When there is no risk of ambiguity, we will sometimes repldeX = z|Y = y), P(Y =
y|X =), P(W = z;|Y =y), etc. withP(z|y), P(y|z), P(z:|y).

46, can also be viewed as an “effective region length” parameter, wherssaume that region
of the document can be treated as ofylyindependent pieces of observation. For example, note that
if each regiorr of the document hag. words exactly, then this model reduces to naive Bayes.



only difference being that in this caseis a constant calculated from the estimated class
priors. To make the parallel to logistic regression conglete defineghy, = 1, redefined
asf = (6, 01, 02), and define a new class posterior

Py(Y = 1]z) = Trep (=0T 9)

Throughout the derivation, we had assumed that the paresnBte|y) were fit gener-
atively as in Equation (3) (and is in turn derived from these parameters as described
above). It therefore remains only to specify héw chosen. One method would be to pick
6 by maximizing the conditional log-likelihood of the traig setM = {z() y®}m -

0 = argmaxg 1" | log Py (y™]z(®) (10)
However, the word generation probabilities that were usezhiculateh were also trained
from the training set\/. This procedure therefore fits the parameteit® the training
data, using “featuresb that were also fit to the data. This leads to a biased estimator
Specifically, since what we care about is the generalizaggformance of the algorithm,
a better method is to pick to maximize the log-likelihood of data that wasn’t used to
calculate the “features, because when we see a test example, we will not have had the
luxury of incorporating information from the test examphéa theb’s (cf. [15, 12]). This
leads to the following “leave-one-out” strategy of pickifg

6 = argmaxg y .-, log ng,i(y(i) lz®), (11)

whereP; _,(y'|2(") is as given in Equation (9), except that edghis computed from
word generation probabilities that were estimated withitheexample of the training set
held out. We note that optimizing this objective to fifids still the same optimization
problem as in logistic regression, and hence is convex andeaolved efficiently. Fur-
ther, the word generation probabilities with ttie example left out can also be computed
efficiently®

The predicted label for a new document under this methaddsnax,cy Py(y|z). We
call this method th@ormalized hybridcalgorithm. For the sake of comparison, we will also
consider an algorithm in which the exponents in Equationa¢é)not normalized by...

In other words, we replacé./n, there by just,.. We refer to this latter method as the
unnormalized hybriglgorithm.

3 Experimental Results

We now describe the results of experiments testing theteféaess of our methods. All
experiments were run using pairs of newsgroups from the #8m®ups dataset [8] of
USeNET news postings. When parsing this data, we skipped everythitite USENET
headers except the subject line; numbers and email addresse replaced by special
tokens NUMBER and EMAILADDR; and tokens were formed aft@nsining.

In each experiment, we compare the performance of the basie Bayes algorithm with

that of the normalized hybrid algorithm and logistic regies with Gaussian priors on the
parameters. We used logistic regression with word-coumttsd feature vectors (as in [6]),
which forms a discriminative-generative pair with multinial naive Bayes. All results

reported in this section are averages over 10 random tesirsplits.

Figure 1 plots learning curves for the algorithms, when usedassify between various
pairs of newsgroups. We find that in every experiment, fotrthi@ing set sizes considered,
the normalized hybrid algorithm witR = 2 has test error that is either the lowest or very
near the lowest among all the algorithms. In particular|mast always outperforms the

SSpecifically, by precomputing the numerator and denominator of Equéliprwe can later
remove any example by subtracting out the terms in the numerator anchitextor corresponding
to that example.
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Figure 1: Plots of test error vs training size for severaledént newsgroup pairs. Red
dashed line is logistic regression; blue dotted line isddath naive Bayes; black solid line
is the hybrid algorithm. (Colors where available.) (If mdraining data were available,
logistic regression would presumably out-perform naivgd3acf. [6, 11].)

basic naive Bayes algorithm. The difference in performasespecially dramatic for small
training sets.

Although these results are not shown here, the hybrid dlgorivith R = 2 (breaking the
document into two regions) outperfornis = 1. Further, the normalized version of the
hybrid algorithm generally outperforms the unnormalizedsion.

4 Theoretical Results

In this section, we give a distribution free uniform comnvarge bound for our algorithm.
Classical learning and VC theory indicates that, given arttignative model with a small
number of parameters, typically only a small amount of frajrdata should be required
to fit the parameters “well” [14]. In our model, a large numbémparameters” are fit
generatively, but only a small number (thi&s) are fit discriminatively. We would like
to show that only a small training set is required to fit thecdiminative parameters.®
However, standard uniform convergence results do not appiyr problem, because the
“features”d; given to the discriminative logistic regression comporasb depend on the
training set. Further, th&’s are fit using the leave-one-out training procedure, soebery
pair of training examples is actually dependent.

For our analysis, we assume the training set of siae drawni.i.d.from some distribution

D over X x ). Although not necessary, for simplicity we assume that edmtument
has the same total number of words= Zf‘:l n;, though the lengths of the individual
regions may vary. (It also suffices to have an upper- and arlbeend on document
length.) Finally, we also assume that each word occurs at Gigs,. times in a single
document, and that the distributid from which training examples are drawn satisfies

SFor a result showing that naive Bayes’ generatively fit paramegdioeif one using a different
event model) converge to their population (asymptotic) values after d@uaf training examples
that depends logarithmically on the size of the number of features, ada e



Pmin < P(Y =1) <1 — ppin, for some fixetp,,in, > 0.

Note that we dmotassume that the “naive Bayes assumption” (that words aditommally
independent given the class label) holds. Specificallyp @veen the naive Bayes assump-
tion does not hold, the naive Bayafgorithm(as well as our hybrid algorithm) can still be
applied, and our results apply to this setting.

Given a setM of m training examples, for a particular setting of the paraméfethe
expected log likelihood of a randomly drawn test example is:

51\1 (9) = E(w,y)ND 10g PH (y|(E) (12)

whereP; is the probability model trained ol as described in the previous section, using

parametersl5 fit to the entire training set. Our algorithm uses a leave-auteestimate of
the true log likelihood; we call this the leave-one-out lidglihood:

M) = i log Poi(y@]a®) (13)
whereﬁg,,i represents the probability model trained with itteexample left out.

We would like to choosé to maximize="7, but we do not know . Now, it is well-known
that if we have some estimatef a generalization error measurgand if|€(6) —e(0)| < e

for all 9, then optimizingz will result in a value forf that comes withirge of the best
possible value foe [14]. Thus, in order to show that optimizirig, is a good “proxy” for

optimizinge™, we only need to show that, (9) is uniformly close ta=* (). We have:

Theorem 1 Under the previous set of assumptions, in order to ensutentia probability
at leastl — §, we havee™ (9) — 2™, ()| < e for all parameters) such that|d||., < n, it

suffices thatn = O(poly(1/6,1/¢,logn,log [W|, R,n)).

The full proof of this result is fairly lengthy, and is defed to the full version of this
paper [13]. From the theorem, the number of training exampleequired to fit thed
parameters (under the fairly standard regularity conditi@té be bounded) depends only
on the logarithms of the document lengttand the vocabulary siZ@V|. In our bound,
there is an exponential dependenceltyrhowever, from our experienc#, does not need
to be too large for significantly improved performance. lotfaour experimental results
demonstrate good performance fr= 2.

5 Calibration Curves

We now consider a second application of these ideas, to alsgification setting where
the data is not naturally split into different regions (e@lently, whereR = 1). In this
setting we cannot use the “reweighting” power of the hybtgbethm to reduce classifi-
cation error. But, we will see that, by giving better classtpdors, our method still gives
improved performance as measured on accuracy/coveragescur

An accuracy/coverage curve shows the accuracy (fractiorect) of a classifier if it is
asked only to provide% coverage—that is, if it is asked only to label th& of the test
data on which it is most confident. Accuracy/coverage cumwards the upper-right of the
graph mean high accuracy even when the coverage is highharetdre good performance.
Accuracy value at coverage 100% is just the normal classdic&rror. In settings where
both human and computer label documents, accuracy/caverages play a central role
in determining how much data has to be labeled by humans. @reglso indicative of
the quality of a classifier’s class posteriors, becausessiier with better class posteriors
would be able to better judge whial¥% of the test data it should be most confident on, and
achieve higher accuracy when it chooses to label:tfiabf the data.

Figure 2 shows accuracy/coverage curves for classifyingragpairs of newsgroups from
the 20newsgroups dataset. Each plot is obtained by averdugrresults of ten 50%/50%
random train/test splits. The normalized hybrid algorittftn= 1) does significantly better
than naive Bayes, and has accuracy/coverage curves thhigher almost everywhere.
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Figure 2: Accuracy/Coverage curves for different newspgsopairs. Black solid line is
our normalized hybrid algorithm witl® = 1; magenta dash-dot line is naive Bayes; blue
dotted line is unnormalized hybrid, and red dashed linegista regression. (Colors where
available.)

For example, in Figure 2a, the normalized hybrid algorithithw? = 1 has a coverage
of over 40% at 95% accuracy, while naive Bayes’ coverage igr@he same accuracy.
Also, the unnormalized algorithm has performance abousainee as naive Bayes. Evenin
examples where the various algorithms have comparablalbtest error, the normalized
hybrid algorithm has significantly better accuracy/cogera

6 Discussion and Related Work

This paper has described a hybrid generative/discrinvieatiodel, and presented experi-
mental results showing that a simple hybrid model can pertoetter than either its purely

generative or discriminative counterpart. Furthermore,siwowed that in order to fit the

parameterg of the model, only a small number of training examples is gl

There have been a number of previous efforts to modify na&seB to obtain more em-
pirically accurate posterior probabilities. Lewis and &[] use logistic regression to re-
calibrate naive Bayes posteriors in an active learning tAkkir approach is similar to the
lower-performingunnormalizedersion of our algorithm, with only one region. Bennett [1]
studies the problem of using asymmetric parametric modetbtain high quality proba-
bility estimates from the scores outputted by text clagsifieich as naive Bayes. Zadrozny
and Elkan [16] describe a simple non-parametric methoddbibi@ating naive Bayes prob-
ability estimates. While these methods can obtain good glasteriors, we note that in
order to obtain better accuracy/coverage, it is not sufiicie take naive Bayes’ output
p(y|x) and find a monotone mapping from that to a set of hopefullyebethss posteriors
(e.g., [16]). Specifically, in order to obtain better acayaoverage, it is also important to
rearrangethe confidence orderings that naive Bayes gives to docurf@hitsh our method
does because of the normalization).

Jaakkola and Haussler [3] describe a scheme in which thekiema discriminative clas-
sifier is extracted from a generative model. Perhaps theslde our work, however, is



the commonly-used, simple “reweighting” of the languagedeiand acoustic model in
speech recognition systems (e.qg., [5]). Each of the two tsagi¢rained generatively; then
a single weight parameter is set using hold-out cross-atidid.

In related work, there are also a number of theoretical tesul the quality of leave-one-
out estimates of generalization error. Some examplesdedid, 2]. (See [7] for a brief
survey.) Those results tend to be for specialized modelsx# btrong assumptions on the
model, and to our knowledge do not apply to our setting, inciwhie are also trying to fit
the parameters.

In closing, we have presented one hybrid generative/digaétive algorithm that appears
to do well on a number of problems. We suggest that futureareken this area is poised
to bear much fruit. Some possible future work includes: anaiically determining which
parameters to train generatively and which discrimindtiveraining methods for more
complex models with latent variables, that require EM téneste both sets of parameters;
methods for taking advantage of the hybrid nature of thesdefsao better incorporate
domain knowledge; handling missing data; and support fiori-seipervised learning.
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