
Policy search by dynamic programming

J. Andrew Bagnell
Carnegie Mellon University

Pittsburgh, PA 15213

Sham Kakade
University of Pennsylvania

Philadelphia, PA 19104

Andrew Y. Ng
Stanford University
Stanford, CA 94305

Jeff Schneider
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We consider the policy search approach to reinforcement learning. We
show that if a “baseline distribution” is given (indicating roughly how
often we expect a good policy to visit each state), then we can derive
a policy search algorithm that terminates in a finite number of steps,
and for which we can provide non-trivial performance guarantees. We
also demonstrate this algorithm on several grid-world POMDPs, a planar
biped walking robot, and a double-pole balancing problem.

1 Introduction

Policy search approaches to reinforcement learning represent a promising method for solv-
ing POMDPs and large MDPs. In the policy search setting, we assume that we are given
some class Π of policies mapping from the states to the actions, and wish to find a good
policy π ∈ Π. A common problem with policy search is that the search through Π can be
difficult and computationally expensive, and is thus typically based on local search heuris-
tics that do not come with any performance guarantees.

In this paper, we show that if we give the learning agent a “base distribution” on states
(specifically, one that indicates how often we expect it to be in each state; cf. [5, 4]), then we
can derive an efficient policy search algorithm that terminates after a polynomial number
of steps. Our algorithm outputs a non-stationary policy, and each step in the algorithm
requires only a minimization that can be performed or approximated via a call to a standard
supervised learning algorithm. We also provide non-trivial guarantees on the quality of the
policies found, and demonstrate the algorithm on several problems.

2 Preliminaries

We consider an MDP with state space S; initial state s0 ∈ S; action space A; state transition
probabilities {Psa(·)} (here, Psa is the next-state distribution on taking action a in state s);
and reward function R : S 7→ R, which we assume to be bounded in the interval [0, 1].

In the setting in which the goal is to optimize the sum of discounted rewards over an infinite-
horizon, it is well known that an optimal policy which is both Markov and stationary (i.e.,
one where the action taken does not depend on the current time) always exists. For this
reason, learning approaches to infinite-horizon discounted MDPs have typically focused

on searching for stationary policies (e.g., [8, 5, 9]). In this work, we consider policy search
in the space of non-starionary policies, and show how, with a base distribution, this allows
us to derive an efficient algorithm.

We consider a setting in which the goal is to maximize the sum of undiscounted rewards
over a T step horizon: 1

T
E[R(s0) + R(s1) + . . . + R(sT−1)]. Clearly, by choosing

T sufficiently large, a finite-horizon problem can also be used to approximate arbitrar-
ily well an infinite-horizon discounted problem. (E.g., [6]) Given a non-stationary policy
(πt, πt+1, . . . , πT−1), where each πt : S 7→ A is a (stationary) policy, we define the value

Vπt,...,πT−1
(s) ≡ 1

T
E[R(st) + R(st+1) + . . . + R(sT−1)|st = s; (πt, . . . , πT−1)]

as the expected (normalized) sum of rewards attained by starting at state s and the “clock”
at time t, taking one action according to πt, taking the next action according to πt+1, and
so on. Note that

Vπt,...,πT−1
(s) ≡ 1

T
R(s) + Es′∼Psπt(s)

[Vπt+1,...,πT−1
(s)],

where the “s′ ∼ Psπt(s)” subscript indicates that the expectation is with respect to s′ drawn
from the state transition distribution Psπt(s).

In our policy search setting, we consider a restricted class of deterministic, stationary poli-
cies Π, where each π ∈ Π is a map π : S 7→ A, and a corresponding class of non-stationary
policies ΠT = {(π0, π1, . . . , πT−1) | for all t, πt ∈ Π}. In the partially observed, POMDP
setting, we may restrict Π to contain policies that depend only on the observable aspects
of the state, in which case we obtain a class of memoryless/reactive policies. Our goal is
to find a non-stationary policy (π0, π1 . . . , πT−1) ∈ ΠT which performs well under the
performance measure Vπ0,π1...,πT−1

(s0), which we abbreviate as Vπ(s0) when there is no
risk of confusion.

3 The Policy Search Algorithm

Following [5, 4], we assume that we are given a sequence of base distributions
µ0, µ1, . . . , µT−1 over the states. Informally, we think of µt as indicating to the algorithm
approximately how often we think a good policy visits each state at time t.

Our algorithm (also given in [4]), which we call Policy Search by Dynamic Programming
(PSDP) is in the spirit of the traditional dynamic programming approach to solving MDPs
where values are “backed up.” In PSDP, it is the policy which is backed up. The algorithm
begins by finding πT−1, then πT−2, . . . down to π0. Each policy πt is chosen from the
stationary policy class Π. More formally, the algorithm is as follows:

Algorithm 1 (PSDP) Given T , µt, and Π:

for t = T − 1, T − 2, . . . , 0

Set πt = arg maxπ′∈ΠEs∼µt
[Vπ′,πt+1...,πT−1

(s)]

In other words, we choose πt from Π so as to maximize the expected sum of future rewards
for executing actions according to the policy sequence (πt, πt+1, . . . , πT−1) when starting
from a random initial state s drawn from the baseline distribution µt.

Since µ0, . . . , µT−1 provides the distribution over the state space that the algorithm is op-
timizing with respect to, we might hope that if a good policy tends to visit the state space
in a manner comparable to this base distribution, then PSDP will return a good policy.
The following theorem formalizes this intuition. The theorem also allows for the situation
where the maximization step in the algorithm (the arg maxπ′∈Π) can be done only approx-
imately. We later give specific examples showing settings in which this maximization can
(approximately or exactly) be done efficiently.

The following definitions will be useful. For a non-stationary policy π = (π0, . . . , πT−1),
define the future state distribution

µπ,t(s) = Pr(st = s|s0, π).

I.e. µπ,t(s) is the probability that we will be in state s at time t if picking actions according
to π and starting from state s0. Also, given two T -step sequences of distributions over
states µ = (µ0, . . . , µt) and µ′ = (µ′0, . . . , µ

′

t), define the average variational distance
between them to be1

dvar(µ, µ′) ≡
1

T

T−1
∑

t=0

∑

s∈S

|µt(s)− µ′t(s)|

Hence, if πref is some policy, then dvar(µ, µπref
) represents how much the base distribution

µ differs from the future state distribution of the policy πref .

Theorem 1 (Performance Guarantee) Let π = (π0, . . . , πT−1) be a non-stationary pol-
icy returned by an ε-approximate version of PSDP in which, on each step, the policy πt

found comes within ε of maximizing the value. I.e.,

Es∼µt
[Vπt,πt+1...,πT−1

(s)] ≥ maxπ′∈ΠEs∼µt
[Vπ′,πt+1...,πT−1

(s)]− ε . (1)

Then for all πref ∈ ΠT we have that

Vπ(s0) ≥ Vπref
(s0)− Tε− Tdvar(µ, µπref

) .

Proof. This proof may also be found in [4], but for the sake of completeness, we also
provide it here. Let Pt(s) = Pr(st = s|s0, πref), πref = (πref ,0, . . . , πref ,T−1) ∈ ΠT , and
π = (π0, . . . , πT−1) be the output of ε-PSDP. We have

Vπref
− Vπ = 1

T

∑T−1
t=0 Est∼Pt

[R(st)]− Vπ0,...(s)

=
∑T−1

t=0 Est∼Pt
[1
T

R(st) + Vπt,...(st)− Vπt,...(st)]− Vπ0,...(s)

=
∑T−1

t=0 Est∼Pt,st+1∼Pstπref ,t
(st)

[1
T

R(st) + Vπt+1,...(st+1)− Vπt,...(st)]

=
∑T−1

t=0 Est∼Pt
[Vπref ,t,πt+1,...,πT−1

(st)− Vπt,πt+1,...,πT−1
(st)]

It is well-known that for any function f bounded in absolute value by B, it holds true that
|Es∼µ1

[f(s)] − Es∼µ2
[f(s)]| ≤ B

∑

s |µ1(s) − µ2(s)|. Since the values are bounded in
the interval [0, 1] and since Pt = µπref ,t,
∑T−1

t=0 Est∼Pt
[Vπref ,t,πt+1,...,πT−1

(st)− Vπt,πt+1,...,πT−1
(st)]

≤
∑T−1

t=0 Es∼µt
[Vπref ,t,πt+1,...,πT−1

(s)− Vπt,πt+1,...,πT−1
(s)]−

∑T−1
t=0 |Pt(s)− µt(s)|

≤
∑T−1

t=0 maxπ′∈ΠEs∼µt
[Vπ′,πt+1,...,πT−1

(s)− Vπt,πt+1,...,πT−1
(s)]− Tdvar(µπref

, µ)

≤ Tε + Tdvar(µπref
, µ)

where we have used equation (1) and the fact that πref ∈ ΠT . The result now follows. ¤

This theorem shows that PSDP returns a policy with performance that competes favorably
against those policies πref in ΠT whose future state distributions are close to µ. Hence, we
expect our algorithm to provide a good policy if our prior knowledge allows us to choose a
µ that is close to a future state distribution for a good policy in ΠT .

It is also shown in [4] that the dependence on dvar is tight in the worst case. Furthermore,
it is straightforward to show (cf. [6, 8]) that the ε-approximate PSDP can be implemented
using a number of samples that is linear in the VC dimension of Π, polynomial in T and 1

ε
,

but otherwise independent of the size of the state space. (See [4] for details.)

4 Instantiations

In this section, we provide detailed examples showing how PSDP may be applied to specific
classes of policies, where we can demonstrate computational efficiency.

1If S is continuous and µt and µ′

t are densities, the inner summation is replaced by an integral.

4.1 Discrete observation POMDPs

Finding memoryless policies for POMDPs represents a difficult and important problem.
Further, it is known that the best memoryless, stochastic, stationary policy can perform
better by an arbitrarily large amount than the best memoryless, deterministic policy. This
is frequently given as a reason for using stochastic policies. However, as we shortly show,
there is no advantage to using stochastic (rather than deterministic) policies, when we are
searching for non-stationary policies.

Four natural classes of memoryless policies to consider are as follows: stationary determin-
istic (SD), stationary stochastic (SS), non-stationary deterministic (ND) and non-stationary
stochastic (NS). Let the operator opt return the value of the optimal policy in a class. The
following specifies the relations among these classes.

Proposition 1 (Policy ordering) For any finite-state, finite-action POMDP,
opt(SD) ≤ opt(SS) ≤ opt(ND) = opt(NS)

We now sketch a proof of this result. To see that opt(ND) = opt(NS), let µNS be the future
distribution of an optimal policy πNS ∈ NS. Consider running PSDP with base distribution
µNS. After each update, the resulting policy (πNS,0, πNS,1, . . . , πt, . . . , πT) must be at least
as good as πNS. Essentially, we can consider PSDP as sweeping through each timestep and
modifying the stochastic policy to be deterministic, while never decreasing performance.
A similar argument shows that opt(SS) ≤ opt(ND) while a simple example POMDP in the
next section demonstrates this inequality can be strict.

The potentially superior performance of non-stationary policies contrasted with stationary
stochastic ones provides further justification for their use. Furthermore, the last inequal-
ity suggests that only considering deterministic policies is sufficient in the non-stationary
regime.

Unfortunately, one can show that it is NP-hard to exactly or approximately find the best
policy in any of these classes (this was shown for SD in [7]). While many search heuristics
have been proposed, we now show PSDP offers a viable, computationally tractable, alter-
native for finding a good policy for POMDPs, one which offers performance guarantees in
the form of Theorem 1.

Proposition 2 (PSDP complexity) For any POMDP, exact PSDP (ε = 0) runs in time
polynomial in the size of the state and observation spaces and in the horizon time T .

Under PSDP, the policy update is as follows:
πt(o) = arg maxaEs∼µt

[p(o|s)Va,πt+1...,πT−1
(s)] , (2)

where p(o|s) is the observation probabilities of the POMDP and the policy sequence
(a, πt+1 . . . , πT−1) always begins by taking action a. It is clear that given the policies from
time t + 1 onwards, Va,πt+1...,πT−1

(s) can be efficiently computed and thus the update 2
can be performed in polynomial time in the relevant quantities. Intuitively, the distribution
µ specifies here how to trade-off the benefits of different underlying state-action pairs that
share an observation. Ideally, it is the distribution provided by an optimal policy for ND
that optimally specifies this tradeoff.

This result does not contradict the NP-hardness results, because it requires that a good
baseline distribution µ be provided to the algorithm. However, if µ is the future state
distribution of the optimal policy in ND, then PSDP returns an optimal policy for this class
in polynomial time.

Furthermore, if the state space is prohibitively large to perform the exact update in equa-
tion 2, then Monte Carlo integration may be used to evaluate the expectation over the state
space. This leads to an ε-approximate version of PSDP, where one can obtain an algorithm
with no dependence on the size of the state space and a polynomial dependence on the
number of observations, T , and 1

ε
(see discussion in [4]).

4.2 Action-value approximation

PSDP can also be efficiently implemented if it is possible to efficiently find an approximate
action-value function Ṽa,πt+1...,πT−1

(s), i.e., if at each timestep

ε ≥ Es∼µt
[maxa∈A|Ṽa,πt+1...,πT−1

(s)− Va,πt+1...,πT−1
(s)|] .

(Recall that the policy sequence (a, πt+1 . . . , πT−1) always begins by taking action a.)
If the policy πt is greedy with respect to the action value Ṽa,πt+1...,πT−1

(s) then it follows
immediately from Theorem 1 that our policy value differs from the optimal one by 2Tε plus
the µ dependent variational penalty term. It is important to note that this error is phrased in
terms of an average error over state-space, as opposed to the worst case errors over the state
space that are more standard in RL. We can intuitively grasp this by observing that value
iteration style algorithms may amplify any small error in the value function by pushing
more probability mass through where these errors are. PSDP, however, as it does not use
value function backups, cannot make this same error; the use of the computed policies
in the future keeps it honest. There are numerous efficient regression algorithms that can
minimize this, or approximations to it.

4.3 Linear policy MDPs

We now examine in detail a particular policy search example in which we have a two-
action MDP, and a linear policy class is used. This case is interesting because, if the
term Es∼µt

[Vπ,πt+1,...,πT−1
(s)] (from the maximization step in the algorithm) can be nearly

maximized by some linear policy π, then a good approximation to π can be found.

Let A = {a1, a2}, and Π = {πθ(s) : θ ∈ R
n}, where πθ(s) = a1 if θT φ(s) ≥ 0,

and πθ(s) = a2 otherwise. Here, φ(s) ∈ R
n is a vector of features of the state s. Con-

sider the maximization step in the PSDP algorithm. Letting 1{·} be the indicator function
(1{True} = 1, 1{False} = 0), we have the following algorithm for performing the maxi-
mization:

Algorithm 2 (Linear maximization) Given m1 and m2:

for i = 1 to m1

Sample s(i) ∼ µt.
Use m2 Monte Carlo samples to estimate Va1,πt+1,...,πT−1

(s(i)) and
Va2,πt+1,...,πT−1

(s(i)). Call the resulting estimates q1 and q2.

Let y(i) = 1{q1 > q2}, and w(i) = |q1 − q2|.

Find θ = arg minθ

∑m1

i=1 w(i)1{1{θT φ(s(i)) ≥ 0} 6= y(i)}.

Output πθ.

Intuitively, the algorithm does the following: It samples m1 states s(1), . . . , s(m1) from the
distribution µt. Using m2 Monte Carlo samples, it determines if action a1 or action a2 is
preferable from that state, and creates a “label” y(i) for that state accordingly. Finally, it
tries to find a linear decision boundary separating the states from which a1 is better from
the states from which a2 is better. Further, the “importance” or “weight” w(i) assigned to
s(i) is proportional to the difference in the values of the two actions from that state.

The final maximization step can be approximated via a call to any standard supervised
learning algorithm that tries to find linear decision boundaries, such as a support vector
machine or logistic regression. In some of our experiments, we use a weighted logistic
regression to perform this maximization. However, using linear programming, it is possible
to approximate this maximization. Let

T (θ) =

m1
∑

i=1

w(i)1{1{θT φ(s(i)) ≥ 0} 6= y(i)}

Figure 1: Illustrations of mazes: (a) Hallway (b) McCallum’s Maze (c) Sutton’s Maze

be the objective in the minimization. If there is a value of θ that can satisfies T (θ) = 0,
then it can be found via linear programming. Specifically, for each value of i, we let there
be a constraint

{

θT φ(s(i)) > κ if y(i) = 1
θT φ(s(i)) < −κ otherwise

otherwise, where κ is any small positive constant. In the case in which these constraints
cannot be simultaneously satisfied, it is NP-hard to find arg minθ T (θ). [1] However, the
optimal value can be approximated. Specifically, if θ∗ = arg minθ T (θ), then [1] presents
a polynomial time algorithm that finds θ so that

T (θ) ≤ (n + 1)T (θ∗).
Here, n is the dimension of θ. Therefore, if there is a linear policy that does well, we also
find a policy that does well. (Conversely, if there is no linear policy that does well—i.e.,
if T (θ∗) above were large—then the bound would be very loose; however, in this setting
there is no good linear policy, and hence we arguably should not be using a linear policy
anyway or should consider adding more features.)

5 Experiments

The experiments below demonstrate each of the instantiations described previously.

5.1 POMDP gridworld example

Here we apply PSDP to some simple maze POMDPs (Figure (5.1) to demonstrate its per-
formance. In each the robot can move in any of the 4 cardinal direction. Except in (5.1c),
the observation at each grid-cell is simply the directions in which the robot can freely move.
The goal in each is to reach the circled grid cell in the minimum total number of steps from
each starting cell.

First we consider the hallway maze in Figure (5.1a). The robot here is confounded by all
the middle states appearing the same, and the optimal stochastic policy must take time at
least quadratic in the length of the hallway to ensure it gets to the goal from both sides.
PSDP deduces a non-stationary deterministic policy with much better performance: first
clear the left half maze by always traveling right and then the right half maze by always
traveling left.

McCallum’s maze (Figure 5.1b) is discussed in the literature as admitting no satisficing
determinisitic reactive policy. When one allows non-stationary policies, however, solutions
do exist: PSDP provides a policy with 55 total steps to goal. In our final benchmark,
Sutton’s maze (Figure 5.1c), the observations are determined by the openness of all eight
connected directions.

Below we summarize the total number of steps to goal of our algorithm as compared with
optimality for two classes of policy. Column 1 denotes PSDP performance using a uniform
baseline distribution. The next column lists the performance of iterating PSDP, starting
initially with a uniform baseline µ and then computing with a new baseline µ′ based on the
previously constructed policy. 2 Column 3 corresponds to optimal stationary deterministic

2It can be shown that this procedure of refining µ based on previous learned policies will never
decrease performance.

policy while the final column gives the best theoretically achievable performance given
arbitrary memory. It is worthwhile to note that the PSDP computations are very fast in all
of these problems, taking well under a second in an interpreted language.

µ uniform µ iterated Optimal SD Optimal
Hallway 21 21 ∞ 18
McCallum 55 48 ∞ 39
Sutton 412 412 416 ≥ 408

5.2 Robot walking

Our work is related in spirit to Atkeson and Morimoto [2], which describes a differential
dynamic programming (DDP) algorithm that learns quadratic value functions along trajec-
tories. These trajectories, which serve as an analog of our µ distribution, are then refined
using the resulting policies. A central difference is their use of the value function back-
ups as opposed to policy backups. In tackling the control problem presented in [2] we
demonstrate ways in which PSDP extends that work.

[2] considers a planar biped robot that walks along a bar. The robot has two legs and a
motor that applies torque where they meet. As the robot lacks knees, it walks by essentially
brachiating (upside-down); a simple mechanism grabs the bar as a foot swings into posi-
tion. The robot (excluding the position horizontally along the bar) can be described in a 5
dimensional state space using angles and angular velocities from the foot grasping the bar.
The control variable that needs to be determined is the hip-torque.

In [2], significant manual “cost-function engineering” or “shaping” of the rewards was
used to achieve walking at fixed speed. Much of this is due to the limitations of differential
dynamic programming in which cost functions must always be locally quadratic. This rules
out natural cost functions that directly penalize, for example, falling. As this limitation does
not apply to our algorithm, we used a cost function that rewards the robot for each time-
step it remains upright. In addition, we penalize quadratically deviation from the nominal
horizontal velocity of 0.4 m/s and control effort applied.

Samples of µ are generated in the same way [2] generates initial trajectories, using a para-
metric policy search. For our policy we approximated the action-value function with a
locally-weighted linear regression. PSDP’s policy significantly improves performance over
the parametric policy search; while both keep the robot walking we note that PSDP incurs
31% less cost per step.

DDP makes strong, perhaps unrealistic assumptions about the observability of state vari-
ables. PSDP, in contrast, can learn policies with limited observability. By hiding state
variables from the algorithm, this control problem demonstrates PSDP’s leveraging of non-
stationarity and ability to cope with partial observability. PSDP can make the robot walk
without any observations; open loop control is sufficient to propel the robot, albeit at a
significant reduction in performance and robustness. In Figure (5.2) we see the signal gen-
erated by the learned open-loop controller. This complex torque signal would be identical
for arbitrary initial conditions— modulo sign-reversals, as the applied torque at the hip is
inverted from the control signal whenever the stance foot is switched.

5.3 Double-pole balancing

Our third problem, double pole balancing, is similar to the standard inverted pendulum
problem, except that two unactuated poles, rather than a single one, are attached to the
cart, and it is our task to simultaneously keep both of them balanced. This makes the task
significantly harder than the standard single pole problem.

Using the simulator provided by [3], we implemented PSDP for this problem. The
state variables were the cart position x; cart velocity ẋ; the two poles’ angles φ1 and
φ2; and the poles’ angular velocities φ̇1 and φ̇2. The two actions are to accelerate left

0 2 4 6 8 10 12 14 16 18 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time (s)

co
nt

ro
l t

or
qu

e

0 2 4 6 8 10 12 14 16 18 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time (s)

an
gl

e
(ra

d)

Figure 2: (Left) Control signal from open-loop learned controller. (Right) Resulting angle
of one leg. The dashed line in each indicates which foot is grasping the bar at each time.

and to accelerate right. We used a linear policy class Π as described previously, and
φ(s) = [x, ẋ, φ1, φ̇1, φ2, φ̇2]

T . By symmetry of the problem, a constant intercept term
was unnecessary; leaving out an intercept enforces that if a1 is the better action for some
state s, then a2 should be taken in the state −s.

The algorithm we used for the optimization step was logistic regression.3 The baseline
distribution µ that we chose was a zero-mean multivariate Gaussian distribution over all
the state variables. Using a horizon of T = 2000 steps and 5000 Monte Carlo samples per
iteration of the PSDP algorithm, we are able to successfully balance both poles.

Acknowledgments. We thank Chris Atkeson and John Langford for helpful conversa-
tions. J. Bagnell is supported by an NSF graduate fellowship. This work was also sup-
ported by NASA, and by the Department of the Interior/DARPA under contract number
NBCH1020014.

References

[1] E. Amaldi and V. Kann. On the approximability of minimizing nonzero variables or
unsatisfied relations in linear systems. Theoretical Comp. Sci., 1998.

[2] C. Atkeson and J. Morimoto. Non-parametric representation of a policies and value
functions: A trajectory based approach. In NIPS 15, 2003.

[3] F. Gomez.
http://www.cs.utexas.edu/users/nn/pages/software/software.html.

[4] Sham Kakade. On the Sample Complexity of Reinforcement Learning. PhD thesis,
University College London, 2003.

[5] Sham Kakade and John Langford. Approximately optimal approximate reinforcement
learning. In Proc. 19th International Conference on Machine Learning, 2002.

[6] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. Approximate planning in large
POMDPs via reusable trajectories. (extended version of paper in NIPS 12), 1999.

[7] M. Littman. Memoryless policies: theoretical limitations and practical results. In Proc.
3rd Conference on Simulation of Adaptive Behavior, 1994.

[8] Andrew Y. Ng and Michael I. Jordan. PEGASUS: A policy search method for large
MDPs and POMDPs. In Proc. 16th Conf. Uncertainty in Artificial Intelligence, 2000.

[9] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229–256, 1992.

3In our setting, we use weighted logistic regression and minimize −`(θ) =

−
P

i
w(i) log p(y(i)|s(i), θ) where p(y = 1|s, θ) = 1/(1 + exp(−θT s)). It is straightfor-

ward to show that this is a (convex) upper-bound on the objective function T (θ).

