
The Importance of Encoding Versus Training with Sparse Coding

and Vector Quantization

Adam Coates acoates@cs.stanford.edu
Andrew Y. Ng ang@cs.stanford.edu

Stanford University, 353 Serra Mall, Stanford, CA 94305

Abstract

While vector quantization (VQ) has been ap-
plied widely to generate features for visual
recognition problems, much recent work has
focused on more powerful methods. In par-
ticular, sparse coding has emerged as a strong
alternative to traditional VQ approaches and
has been shown to achieve consistently higher
performance on benchmark datasets. Both
approaches can be split into a training phase,
where the system learns a dictionary of ba-
sis functions, and an encoding phase, where
the dictionary is used to extract features from
new inputs. In this work, we investigate
the reasons for the success of sparse coding
over VQ by decoupling these phases, allow-
ing us to separate out the contributions of
training and encoding in a controlled way.
Through extensive experiments on CIFAR,
NORB and Caltech 101 datasets, we compare
several training and encoding schemes, in-
cluding sparse coding and a form of VQ with
a soft threshold activation function. Our re-
sults show not only that we can use fast VQ
algorithms for training, but that we can just
as well use randomly chosen exemplars from
the training set. Rather than spend resources
on training, we find it is more important to
choose a good encoder—which can often be
a simple feed forward non-linearity. Our re-
sults include state-of-the-art performance on
both CIFAR and NORB.

1. Introduction

A great deal of work in computer vision has used
vector quantization (VQ) as a tool for constructing

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

higher level image representations. For instance, the
K-means algorithm is often used in “visual word mod-
els” (Csurka et al., 2004; Lazebnik et al., 2006) to train
a dictionary of exemplar low-level descriptors that are
then used to define a mapping (an “encoding”) of
the descriptors into a new feature space. More re-
cently, machine learning research has sought to employ
more powerful algorithms and models for these prob-
lems that generate better features than those learned
with VQ methods. One alternative to VQ that has
served in this role is sparse coding, which has con-
sistently yielded better results on benchmark recogni-
tion tasks (Yang et al., 2009; Boureau et al., 2010).
A natural question is whether this higher performance
is the result of learning a better dictionary for repre-
senting the structure of the data, or whether sparse
codes are simply better non-linear features. In either
case, are there other training algorithms or encodings
that might be simpler yet competitive with sparse cod-
ing? We attempt to answer these questions through a
large array of experiments on CIFAR, NORB and Cal-
tech 101 datasets where we carefully separate out the
contributions of the training and encoding methods.

More specifically, we note that feature learning algo-
rithms are typically broken into two components: (i) a
training algorithm that learns a set of basis functions,
D, (referred to variously as “weights”, a “codebook”,
or a “dictionary”), and (ii) an encoding algorithm that,
given D, defines a mapping from an input vector x to a
feature vector f . Even though these two components
are often closely connected, it is not strictly neces-
sary to use an encoding algorithm that matches the
training algorithm. For instance, while it is natural
to pair K-means training with a hard-assignment en-
coding scheme, it has been shown that soft encodings
(e.g., using Gaussian RBFs) yield better features even
when hard assignment was used during training (van
Gemert et al., 2008; Boureau et al., 2010; Agarwal &
Triggs, 2006). In our experiments, we will exploit the
ability to “mix and match” training and encoding algo-
rithms in this way to analyze the contributions of each

The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization

module in a controlled setting. In particular, we will
analyze the benefits of sparse coding both as a training
algorithm and as an encoding strategy in comparison
to several other methods, including VQ.

The main contributions of our work emerge from our
analysis of these experiments. We discover two sur-
prising results:

1. When using sparse coding as the encoder, virtu-
ally any training algorithm can be used to create
a suitable dictionary. We can use VQ, or even
randomly chosen exemplars to achieve very high
performance.

2. Regardless of the choice of dictionary, a very sim-
ple encoder (a soft thresholding function) can of-
ten be competitive with sparse coding.

These results not only shed light on the reasons for
sparse coding’s success (namely, it is a highly effective
encoding scheme), but also suggests that we may be
able to build and test large models very rapidly, with
far simpler training and encoding methods than sparse
coding itself.

We begin with an overview of some related work on
sparse coding, visual word models, and feature encod-
ing schemes in Section 2 followed by our experimental
setup in Section 3. We then continue with our results
in Section 4 and conclude with some discussion of our
findings and their relationship to prior results in Sec-
tion 5 before closing.

2. Related Work

Vector quantization has been used extensively in “vi-
sual words” models in computer vision. Specifically,
the K-means clustering algorithm is used to learn a
set of centroids that are then used to map inputs
into a new feature space. For instance, in the “bag
of words” and spatial pyramid models (Csurka et al.,
2004; Lazebnik et al., 2006) it is typical to map an in-
put x to a 1-of-K coded vector s, where the element
si is 1 if the input vector x belongs to cluster i. This
quantization makes K-means learning very fast, but re-
sults in crude features. Thus, other authors have used
“soft” assignments (e.g., Gaussian activations) to im-
prove performance of the encoding stage (van Gemert
et al., 2008; Agarwal & Triggs, 2006).

In our work, we will also use soft assignments with vec-
tor quantization, but with some important differences.
First, we use a different variant of vector quantiza-
tion (known as “gain shape” vector quantization) that
learns normalized basis functions with dot-products as

the similarity metric (rather than Euclidean distance
as with K-means). This makes the resulting algorithm
more comparable to sparse coding. Second, we use a
soft threshold function for our soft assignment, which
we will show gives excellent performance and is loosely
related to both sparse coding and to recent results us-
ing K-means.

The soft threshold function (namely,
sign(z)max(0, |z| − α) where α is an adjustable
threshold) has also been adopted in other recent work.
It has been used in conjunction with the Predictive
Sparse Decomposition algorithm (Kavukcuoglu et al.,
2008), where a feed-forward network is trained
explicitly to mimic sparse coding. It has also be-
come popular as the non-linearity in various deep
learning architectures (Kavukcuoglu et al., 2010;
Nair & Hinton, 2010; Krizhevsky, 2010), and is often
referred to as a “shrinkage” function for its role in
regularization and sparse coding algorithms (Gregor
& LeCun, 2010). Thus, we are by no means the first
to observe the usefulness of this particular activation
function. In our work, however, we will show that
such a nonlinearity on its own is consistently able
to compete with sparse coding in our experiments,
even without any form of training to “tune” the basis
functions to work in conjunction with it.

Though vector quantization is extremely fast, sparse
coding has been shown to work consistently bet-
ter (Boureau et al., 2010; Kavukcuoglu et al., 2010;
Yang et al., 2009). Thus, fast algorithms and approxi-
mations have been devised to make its use more prac-
tical on large problems (Gregor & LeCun, 2010; Wu &
Lange, 2008). Other authors, however, have chosen in-
stead to dissect sparse coding in search of its strengths
and weaknesses, with an eye toward developing new
encodings. In particular, Yu et al. (2009) have argued
for “locality preserving” encodings based on the idea
that such encodings allow higher-level systems to learn
functions across the data manifold more easily. Their
system used a locality-aware variant of sparse coding,
but the feed-forward encoder we use may also have
similar properties while being much simpler.

Finally, we note that recent results in the literature
also indicate that the choice of basis functions may
not be as critical as one might imagine. Jarrett
et al. (2009) showed that architectures with random
weights could perform surprisingly well in recognition
tasks, even though the performance was not as good
as trained weights. Meanwhile, Wang et al. (2010)
showed that K-means could be used to learn approxi-
mate but similarly performing dictionaries for use with
their own encoding. Our results corroborate and ex-
tend these findings. In particular, we will provide

The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization

results using dictionaries created from random noise,
randomly sampled exemplars, and vector quantization
and show that the last two yield perfectly usable dic-
tionaries in every case.

3. Learning framework

Given an unsupervised learning algorithm, we learn
a new feature representation from unlabeled data by
employing a common framework. Our feature learn-
ing framework is like the patch-based system presented
in (Coates et al., 2011) with a few modifications. It
shares most of its key components with prior work
in visual word models (Csurka et al., 2004; Lazebnik
et al., 2006; Agarwal & Triggs, 2006).

In order to generate a set of features, our system first
accumulates a batch of small image patches or im-
age descriptors harvested from unlabeled data. When
learning from raw pixels, we extract 6 pixel square
patches, yielding a bank of vectors that are then nor-
malized1 and ZCA whitened (Hyvarinen & Oja, 2000)
(retaining full variance). If we are learning from SIFT
descriptors, we simply take single descriptors to form
a bank of 128-dimensional vectors.

Given the batch of input vectors, x(i) ∈ R
n, an unsu-

pervised learning algorithm is then applied to learn a
dictionary of d elements, D ∈ R

n×d, where each col-
umn D(j) is one element. In order to make all of our
algorithms consistent (so that we may freely change
the choice of encoder), we will make certain that each
of the algorithms we use produces normalized dictio-
nary elements: ||D(j)||22 = 1.

In this work, we will use the following unsupervised
learning algorithms for training the dictionary D:

1. Sparse coding (SC): We train the dictionary
using the L1-penalized sparse coding formulation.
That is, we optimize

min
D,s(i)

∑

i

||Ds(i) − x(i)||22 + λ||s(i)||1 (1)

subject to ||D(j)||22 = 1,∀j

using alternating minimization over the sparse
codes, s(i), and the dictionary, D. We use the co-
ordinate descent algorithm to solve for the sparse
codes (Wu & Lange, 2008).

2. Orthogonal matching pursuit (OMP-k):
Similar to sparse coding, the dictionary is trained

1We subtract the mean and divide by the standard de-
viation of the pixel values.

using an alternating minimization of

min
D,s(i)

∑

i

||Ds(i) − x(i)||22 (2)

subject to ||D(j)||22 = 1,∀j

and ||s(i)||0 ≤ k,∀i

where ||s(i)||0 is the number of non-zero elements
in s(i). In this case, the codes s(i) are computed
(approximately) using Orthogonal Matching Pur-
suit (Pati et al., 1993; Blumensath & Davies,
2007) to compute codes with at most k non-zeros
(which we refer to as “OMP-k”). For a single
input x(i), OMP-k begins with s(i) = 0 and at
each iteration greedily selects an element of s(i)

to be made non-zero to minimize the residual re-
construction error. After each selection, s(i) is
updated to minimize ||Ds(i) − x(i)||22 over s(i) al-
lowing only the selected elements to be non-zero.

Importantly, OMP-1 is a form of “gain-shape vec-
tor quantization” (and is similar to K-means when
the data x(i) and the dictionary elements D(j) all
have unit length). Specifically, it chooses k =

arg maxj |D
(j)⊤x(i)|, then sets s

(i)
k = D(k)⊤x(i)

and all other elements of s(i) to 0. Holding these
“one hot” codes fixed, it is then easy to solve for
the optimal D in (2).

3. Sparse RBMs and sparse auto-encoders
(RBM, SAE): In some of our experiments, we
train sparse RBMs (Hinton et al., 2006) and
sparse auto-encoders (Ranzato et al., 2007; Ben-
gio et al., 2006), both using a logistic sigmoid non-
linearity g(Wx + b). These algorithms yield a set
of weights W and biases b. To obtain the dictio-
nary, D, we simply discard the biases and take
D = W⊤, then normalize the columns of D.

4. Randomly sampled patches (RP): We also
use a heuristic method for populating the dictio-
nary: we fill the columns of D with normalized
vectors sampled randomly from amongst the x(i).

5. Random weights (R): It has also been shown
that completely random weights can perform sur-
prisingly well in some tasks (Jarrett et al., 2009;
Saxe et al., 2010). Thus, we have also tried fill-
ing the columns of D with vectors sampled from
a unit normal distribution (subsequently normal-
ized to unit length).

After running any of the above training procedures,
we have a dictionary D. We must then define an “en-
coder” that, given D, maps a new input vector x to

The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization

a vector of features, f . We will use the following en-
coders:

1. Sparse coding (SC): Given a dictionary D,
which may or may not have been trained using
sparse coding, we solve for the sparse code s for
x by minimizing (1) with D fixed. Note that the
choice of λ in this case may be different from that
used during training. We then take:

fj = max {0, s}

fj+d = max {0,−s}

That is, we split the positive and negative compo-
nents of the sparse code s into separate features.
This allows the higher-level parts of the system
(i.e., the classifier) to weight positive and nega-
tive responses differently if necessary.2

2. Orthogonal matching pursuit (OMP-k): As
above, we compute s given x and D using OMP-k
to yield at most k non-zeros. When k = 1, s will
have just one non-zero element (equal to D(j)⊤x,
for one choice of j). Given s, the features f are
defined as for sparse coding above.

3. Soft threshold (T): We use a simple feed-
forward non-linearity with a fixed threshold α:

fj = max
{

0,D(j)⊤x − α
}

fj+d = max
{

0,−D(j)⊤x − α
}

4. “Natural” encoding: Finally, we will also de-
fine the “natural” encoding for a dictionary D as
whichever encoding is normally used in conjunc-
tion with the training algorithm that generated
D. So, for sparse coding with penalty λ, we would
use sparse coding with the same penalty, and for
OMP we would again use the OMP encoding as
above with the same number of non-zeros. For
RBMs and auto-encoders we use:

fj = g(W (j)x + b) (3)

fj+d = g(−W (j)x + b) (4)

where W (j) is the j’th row of W , and g is the lo-
gistic sigmoid function.3 For random patches and

2This polarity splitting has always improved perfor-
mance in our experiments, and can be thought of as a more
flexible form of the absolute value rectification in (Jarrett
et al., 2009), or as non-negative sparse coding with the
dictionary [−D D].

3This “two sided” encoder ensures that we have still get
2d features, and do not put the RBM and auto-encoder at
a disadvantage relative to the other encodings.

Table 1. Cross-validation results for combinations of learn-
ing algorithms and encoders on CIFAR-10. All numbers
are percent accuracy. The reported accuracies are from
5-fold cross validation on the CIFAR training set, max-
imizing over the choice of hyper-parameters for both the
training and encoding algorithm. I.e., these are the best re-
sults we can obtain using the given combination of training
and encoding algorithms if we choose the hyper-parameters
to maximize the CV accuracy.

Train E
n
c
o
d
e
r

N
a
t
u
r
a
l

S
C

O
M

P
-1

O
M

P
-1

0

T

R 70.5 74.0 65.8 68.6 73.2
RP 76.0 76.6 70.1 71.6 78.1
RBM 74.1 76.7 69.5 72.9 78.3
SAE 74.8 76.5 68.8 71.5 76.7
SC 77.9 78.5 70.8 75.3 78.5
OMP-1 71.4 78.7 71.4 76.0 78.9
OMP-2 73.8 78.5 71.0 75.8 79.0
OMP-5 75.4 78.8 71.0 76.1 79.1
OMP-10 75.3 79.0 70.7 75.3 79.4

random weights we use the soft threshold with
α = 0 (which corresponds to random linear pro-
jections with the positive and negative polarities
split into separate features).

Now, given D and a choice of encoder, we have the abil-
ity to extract features from a patch or image descriptor
x representing a small sub-window of an image. We
can then take this feature extractor and sweep it over
the entire image to extract a set of feature values to
represent the whole image. In our experiments, we use
a step (stride) of 1 pixel for CIFAR and NORB (pixel
inputs), and a step of 8 pixels for Caltech 101 (SIFT
input). The feature values obtained from this extrac-
tion process are then pooled (Jarrett et al., 2009; Yang
et al., 2009) to form a final feature vector for classi-
fication. Depending on the dataset, we use different
types of pooling, which we will specify later.

Given a set of labels, we then standardize the data4

and train a linear classifier (L2-SVM).

4. Experimental Results

4.1. Comparison on CIFAR-10

Our first and most expansive set of experiments
are conducted on the CIFAR-10 dataset (Krizhevsky,
2009). Here, we perform a full comparison of all of
the learning and encoding algorithms described in Sec-
tion 3. In particular, we train the dictionary with

4We subtract the mean and divide by the standard de-
viation of each feature in the training set.

The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization

Table 2. Test results for some of the best systems of Table 1
on CIFAR-10. All numbers are percent accuracy.

Train / Encoder Test Acc.
RP / T 79.1%
SC / SC 78.8%
SC / T 78.9%
OMP-1 / SC 78.8%
OMP-1 / T 79.4%
OMP-10 / T 80.1%
OMP-1 / T (d = 6000) 81.5%
(Coates et al., 2011) 1600 features 77.9%
(Coates et al., 2011) 4000 features 79.6%
Improved LCC (Yu & Zhang, 2010) 74.5%
Conv. DBN (Krizhevsky, 2010) 78.9%
Deep NN (Ciresan et al., 2011) 80.49%

1600 entries from whitened, 6 by 6 pixel color image
patches (108-dimensional vectors), using sparse coding
(SC), orthogonal matching pursuit (OMP) with k =
1, 2, 5, 10, sparse RBMs (RBM), sparse auto-encoders
(SAE), randomly sampled image patches (RP), and
random weights (R).

For each dictionary learned with the algorithms above,
we then extract features not only using the “nat-
ural” encoding associated with the learning algo-
rithm, but also with a host of other encodings from
the ones described in Section 3. Specifically, we
use sparse coding, with λ ∈ {0.5, 0.75, 1.0, 1.25, 1.5},
OMP with k = 1, 10, and soft thresholding (T) with
α ∈ {0.1, 0.25, 0.5, 1.0}. After computing the fea-
tures for a combination of dictionary and encoding
method, we construct a final feature vector by av-
erage pooling over the 4 image quadrants, yielding
4×2×1600 = 12800 features. We report the best 5-fold
cross-validation results, maximizing over the choice of
hyper-parameters5, for each combination of training
algorithm and encoding algorithm in Table 1.

From these numbers, a handful of trends are readily
apparent. First, we note that the first column (which
pairs each learning algorithm with its standard en-
coder) shows that sparse coding is superior to all of
the other methods by a fairly significant margin, with
77.9% accuracy. OMP-1 (which is just slightly more
powerful than hard-assignment K-means) is far worse
(71.4%). However, we do get surprisingly close with
OMP-10 and random patches. If we look at the results
in the remaining columns, it becomes clear that this
is not due to the learned basis functions: when using
sparse coding as the activation (column 2), all of the
dictionaries, except the random one, perform competi-

5Note that for sparse coding this means that the number
reported for the “natural” encoding is for the best choice
of λ when using the same penalty for both training and
encoding. The number in the “sparse coding” column is
the best performance possible when choosing different λ

for training and encoding.

Table 3. Test accuracies for the NORB jittered-cluttered
dataset. All numbers are percent accuracy.

Train E
n
c
o
d
e
r

N
a
t
u
r
a
l

S
C

(λ
=

1
)

T
(α

=
0
.5

)

R 91.9 93.8 93.1
RP 92.8 95.0 93.6
SC λ = 1 94.1 94.1 93.5
OMP-1 90.9 94.2 92.6

Conv.Net (Scherer et al., 2010) 94.4%
SVM-Conv.Net (Huang & LeCun, 2006) 94.1%
ReLU RBM (Nair & Hinton, 2010) 84.8%

tively. This suggests that the strength of sparse coding
on CIFAR comes not from the learned basis functions,
but primarily from the encoding mechanism.

Another striking result of these experiments is the suc-
cess of the soft threshold activation function. Despite
using only a feed-forward non-linearity with a fixed

threshold, this encoding also performs uniformly well
across dictionaries, and as well or even better than
sparse coding.

We next take several of the best performing systems
according to the cross-validation results in Table 1, re-
train the classifiers on the full CIFAR training set and
then test them on the standard test set. The final test
results are reported in Table 2. We note several key
numbers. First, using a dictionary of random patches
and a soft threshold, we obtain 79.1% accuracy. This is
very surprising since this algorithm requires no train-

ing beyond the choice of the threshold (α = 0.25). All
of the other results are similar, with just more than 1%
separating them. The best overall system identified by
cross-validation was OMP-10 with the soft threshold,
achieving 80.1% accuracy.

In addition, we note that it is often possible to achieve
better performance simply by using much larger dic-
tionaries (van Gemert et al., 2008). This is easily
achieved with inexpensive training and encoding algo-
rithms like OMP-1 and the soft-threshold. If we use a
dictionary with d = 6000 basis vectors, we can achieve
81.5% accuracy—the best known result on CIFAR.

4.2. Experiments on NORB

We also perform experiments on the NORB (jittered-
cluttered) dataset (LeCun et al., 2004). Each 108x108
image includes 2 gray stereo channels. We resize the
images to 96x96 pixels and average-pool over a 5x5
grid. We train on the first 2 folds of training data
(58320 examples), and test on both folds of test data
(58320 examples). Based on our experience with CI-

The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization

FAR, we chose fixed values for hyper-parameters for
these experiments. For sparse coding, we have used
λ = 1.0 and for the soft threshold α = 0.5, though the
test results are mostly insensitive to these choices.

We report test errors achieved with the natural en-
coder for each dictionary as well as sparse coding and
the soft threshold in Table 3. Again we see that the
soft threshold, even when coupled with randomly sam-
pled patches, performs nearly as well as sparse coding.
Though performance is slightly lower, we note that its
best showing (93.6%) is achieved with far less labor:
the sparse coding system requires over 7 hours to run
on 40 2.26GHz cores, while the soft threshold scheme
requires just 1 hour. In addition, we also see that
sparse coding performs comparably regardless of which
training algorithm we use. Surprisingly, when using
random patches we achieve 95.0% accuracy—better
than previously published results for this dataset. For
comparison, a recent convolutional neural network sys-
tem (using max pooling) (Scherer et al., 2010) achieved
94.4% on this dataset.

4.3. Experiments on Caltech 101

Finally, we also performed experiments on the Cal-
tech 101 dataset. For these experiments, we adopted
the system of Yang et al. (2009). This system uses
SIFT descriptors as the input to feature learning in-
stead of raw pixels. In particular, SIFT descriptors are
extracted from each image over a grid. This yields a
representation of the image as a set of 128-dimensional
vectors, with one descriptor representing each patch of
the grid. These vectors become the inputs x ∈ R

128

to the training and encoding algorithms and play the
same role as the patches of pixels in our previous ex-
periments.

Given the inputs x(i), a dictionary is constructed as
before using random noise (R), randomly sampled de-
scriptors (RP), sparse coding (SC), or vector quanti-
zation (OMP-1). After performing the encoding, the
features are pooled using max-pooling in a 3-level spa-
tial pyramid (Lazebnik et al., 2006) (i.e., we pool over
4x4, 2x2, and 1x1 grids). We use 30 training examples
per class in our experiments, and report the average
accuracy over 5 samplings of the training and test sets
in Table 4. We use λ = 0.15 (the same used in (Yang
et al., 2009)), and again α = 0.5 for the soft threshold.

As can be seen in Table 4 the results are similar,
though not identical to those on CIFAR and NORB.
First, these results confirm that the choice of dictio-
nary is not especially critical: when using sparse cod-
ing as the encoder, we can use randomly sampled de-
scriptors and achieve high performance. However, it

Table 4. Test results for the Caltech 101 dataset. Num-
bers are percent accuracy (and standard deviation) with
30 training images per class.

SC (λ = 0.15) T (α = 0.5)
R 67.2% (0.8%) 66.6% (0.2%)
RP 72.6% (0.9%) 64.3% (1.2%)
SC 72.6% (0.9%) 67.7% (0.3%)
OMP-1 71.9% (0.9%) 63.2% (1.4%)

SC-SPM (Yang et al., 2009) 73.2% (0.54%)
(Boureau et al., 2010) 75.7% (1.1%)
(Jarrett et al., 2009) 65.5%

appears that the soft threshold works less well for this
dataset. It turns out that one shortcoming of the soft
threshold activation is the use of a constant threshold.
If we instead use a variable threshold (and a dictio-
nary trained with sparse coding), setting α dynami-
cally to yield exactly 20 non-zeros for each example, we
achieve 70.1% accuracy (±0.9%). Still a gap remains,
which appears to be a result of having few training
examples—we will discuss this further in the next sec-
tion.

5. Discussion

5.1. Sparse coding and small datasets

A primary distinction between the Caltech 101 dataset
and the CIFAR and NORB datasets is the number of
available labeled training examples (just 30 per class
for Caltech 101). In this situation, regularization and
prior knowledge become much more important since
we have very few labels for supervised training. It
turns out that sparse coding excels in this scenario:
it yields a feature vector that works well even when
we have very few labels, and even when we use simple
algorithms to populate the dictionary.

We have verified this phenomenon on the CIFAR and
STL-106 (Coates et al., 2011) datasets. We began with
a dictionary learned using OMP-1. We then tested the
performance of the sparse-coding and soft-threshold
encoders when the SVM training procedure is limited
to a small number of labeled examples. For CIFAR,
the average test performance over 5 folds of labeled
data, for various numbers of labeled examples, is plot-
ted in Figure 1. There it can be seen that the per-
formance of sparse coding and the soft-threshold are
essentially identical when we use large labeled train-
ing sets, but that sparse coding performs much better
for smaller numbers of examples. The STL-10 dataset
similarly emphasizes smaller labeled datasets (100 ex-
amples per fold), though providing additional unla-
beled data. On this dataset, the same phenomenon

6http://cs.stanford.edu/∼acoates/stl10/

The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization

is apparent: on 32x32 downsampled images, sparse
coding (λ = 1.0) achieves 59.0% average accuracy
(±0.8%), while the soft-threshold (α = 0.25) achieves
54.9% (±0.4%). Thus it appears that sparse cod-
ing yields a representation that is consistently better
when we do not have many labeled examples, though
both results are better than those previously reported
in (Coates et al., 2011).

0 200 400 600 800 1000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Labeled examples per class

A
cc

ur
ac

y
(%

)

Sparse coding (λ=1)
Thresh (α=0.25)

Figure 1. Performance of sparse coding and soft-threshold
activations are similar only when we have lots of labeled
data as is the case in popular datasets like CIFAR-10.

5.2. Dictionary learning

Our results have shown that the main advantage of
sparse coding is as an encoder, and that the choice of
basis functions has little effect on performance. In-
deed, we can obtain performance on par with any of
the learning algorithms tested simply by sampling ran-
dom patches from the data. This indicates that the
main value of the dictionary is to provide a highly
overcomplete basis on which to project the data be-
fore applying an encoder, but that the exact structure
of these basis functions (which comprise the bulk of the
parameters that we would normally need to estimate)
is less critical than the choice of encoding. All that
appears necessary is to choose the basis to roughly tile
the space of the input data. This increases the chances
that a few basis vectors will be near to an input, yield-
ing a large activation that is useful for identifying the
location of the input on the data manifold later (Ol-
shausen & Field, 2004; Yu et al., 2009). This explains
why vector quantization is quite capable of competing
with more complex algorithms: it simply ensures that
there is at least one dictionary entry near any densely
populated areas of the input space. We expect that
learning is more crucial if we use small dictionaries,
since we would then need to be more careful to pick

basis functions that span the space of inputs equitably.

6. Conclusion

In this paper we have performed a large array of exper-
iments with several competing forms of unsupervised
learning, including sparse coding and vector quantiza-
tion. By decoupling the training and encoding phases
of the algorithms, we have illustrated that the main
power of sparse coding is not that it learns better basis
functions. In fact, we discovered that any reasonable
tiling of the input space (including randomly chosen
input patches) is sufficient to obtain high performance
on any of the three very different recognition problems
that we tested. Instead, the main strength of sparse
coding appears to arise from its non-linear encoding
scheme, which was almost universally effective in our
experiments—even with no training at all. Indeed, it
was difficult to beat this encoding on the Caltech 101
dataset. In many cases, however, it was possible to
do nearly as well using only a soft threshold function,
provided we have sufficient labeled data. Overall, we
conclude that most of the performance obtained in our
results is a function of the choice of architecture and
encoding, suggesting that these are key areas for fur-
ther study and improvements.

Acknowledgments

This work is supported by the DARPA Deep Learning
program under contract number FA8650-10-C-7020.
Adam Coates is supported by a Stanford Graduate
Fellowship.

References

Agarwal, A. and Triggs, B. Hyperfeatures multilevel
local coding for visual recognition. In European Con-

ference on Computer Vision, 2006.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle,
H. Greedy layer-wise training of deep networks. In
Neural Information Processing Systems, 2006.

Blumensath, T. and Davies, M. E. On the
difference between orthogonal matching pursuit
and orthogonal least squares. Unpublished
manuscript, 2007. URL http://www.see.ed.ac.

uk/∼tblumens/papers/BDOMPvsOLS07.pdf.

Boureau, Y., Bach, F., LeCun, Y., and Ponce, J.
Learning mid-level features for recognition. In Com-

puter Vision and Pattern Recognition, 2010.

Ciresan, Dan, Meier, Ueli, Masci, Jonathan,
Gambardella, Luca Maria, and Schmidhuber,

The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization

Jürgen. High-performance neural networks for
visual object classification. Pre-print, 2011.
http://arxiv.org/abs/1102.0183.

Coates, Adam, Lee, Honlak, and Ng, Andrew Y. An
analysis of single-layer networks in unsupervised fea-
ture learning. In International Conference on AI

and Statistics, 2011.

Csurka, G., Dance, C., Fan, L., Willamowski, J., and
Bray, C. Visual categorization with bags of key-
points. In ECCV Workshop on Statistical Learning

in Computer Vision, 2004.

Gregor, K. and LeCun, Y. Learning fast approxima-
tions of sparse coding. In International Conference

on Machine Learning, 2010.

Hinton, G.E., Osindero, S., and Teh, Y.W. A fast
learning algorithm for deep belief nets. Neural Com-

putation, 18(7):1527–1554, 2006.

Huang, F.J. and LeCun, Y. Large-scale learning with
SVM and convolutional nets for generic object cate-
gorization. In Computer Vision and Pattern Recog-

nition, 2006.

Hyvarinen, A. and Oja, E. Independent component
analysis: algorithms and applications. Neural net-

works, 13(4-5):411–430, 2000.

Jarrett, K., Kavukcuoglu, K., Ranzato, M., and Le-
Cun, Y. What is the best multi-stage architecture
for object recognition? In International Conference

on Computer Vision, 2009.

Kavukcuoglu, K., Ranzato, M., and LeCun, Y. Fast
inference in sparse coding algorithms with appli-
cations to object recognition. Technical Report
CBLL-TR-2008-12-01, Computational and Biolog-
ical Learning Lab, Courant Institute, NYU, 2008.

Kavukcuoglu, K., Sermanet, P., Boureau, Y., Gregor,
K., Mathieu, M., and LeCun, Y. Learning convo-
lutional feature hierarchies for visual recognition.
In Advances in Neural Information Processing Sys-

tems, 2010.

Krizhevsky, A. Learning multiple layers of features
from Tiny Images. Master’s thesis, Dept. of Comp.
Sci., University of Toronto, 2009.

Krizhevsky, A. Convolutional Deep Belief Networks
on CIFAR-10. Unpublished manuscript, 2010.

Lazebnik, S., Schmid, C., and Ponce, J. Beyond bags
of features: Spatial pyramid matching for recogniz-
ing natural scene categories. In Computer Vision

and Pattern Recognition, 2006.

LeCun, Y., Huang, F., and Bottou, L. Learning meth-
ods for generic object recognition with invariance to
pose and lighting. In Computer Vision and Pattern

Recognition, 2004.

Nair, V. and Hinton, G. E. Rectified Linear Units
Improve Restricted Boltzmann Machines. In Inter-

national Conference on Machine Learning, 2010.

Olshausen, B.A. and Field, D.J. Sparse coding of sen-
sory inputs. Current opinion in neurobiology, 14(4):
481–487, 2004.

Pati, Y. C., Rezaifar, R., and Krishnaprasad, P. S.
Orthogonal matching pursuit: recursive function ap-
proximation with applications to wavelet decompo-
sition. In Asilomar Conference on Signals, Systems

and Computers, November 1993.

Ranzato, M., Boureau, Y., and LeCun, Y. Sparse fea-
ture learning for deep belief networks. In Advances

in Neural Information Processing Systems. 2007.

Saxe, A., Koh, P., Chen, Z., Bhand, M., Suresh, B.,
and Ng, A. Y. On random weights and unsuper-
vised feature learning. In NIPS Workshop on Deep

Learning and Unsupervised Feature Learning, 2010.

Scherer, D., Mller, A., and Behnke, S. Evaluation of
pooling operations in convolutional architectures for
object recognition. In International Conference on

Artificial Neural Networks, 2010.

van Gemert, J. C., Geusebroek, J. M., Veenman, C. J.,
and Smeulders, A. W. M. Kernel codebooks for
scene categorization. In European Conference on

Computer Vision, 2008.

Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., and
Gong, Y. Locality-constrained linear coding for im-
age classification. In Computer Vision and Pattern

Recognition, 2010.

Wu, T.T. and Lange, K. Coordinate descent algo-
rithms for lasso penalized regression. Annals of Ap-

plied Statistics, 2(1), 2008.

Yang, Jianchao, Yu, Kai, Gong, Yihong, and Huang,
Thomas S. Linear spatial pyramid matching using
sparse coding for image classification. In Computer

Vision and Pattern Recognition, 2009.

Yu, K. and Zhang, T. Improved local coordinate cod-
ing using local tangents. In International Conference

on Machine Learning, 2010.

Yu, K., Zhang, T., and Gong, Y. Nonlinear learning
using local coordinate coding. In Advances in Neural

Information Processing Systems, 2009.

