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Abstract

Many NLP tasks rely on accurately estimat-
ing word dependency probabilities P(w1|w2),
where the words w1 and w2 have a partic-
ular relationship (such as verb-object). Be-
cause of the sparseness of counts of such de-
pendencies, smoothing and the ability to use
multiple sources of knowledge are important
challenges. For example, if the probability
P(N |V ) of noun N being the subject of verb
V is high, and V takes similar objects to V ′,
and V ′ is synonymous to V ′′, then we want
to conclude that P(N |V ′′) should also be rea-
sonably high—even when those words did not
cooccur in the training data.

To capture these higher order relationships,
we propose a Markov chain model, whose
stationary distribution is used to give word
probability estimates. Unlike the manually
defined random walks used in some link anal-
ysis algorithms, we show how to automati-
cally learn a rich set of parameters for the
Markov chain’s transition probabilities. We
apply this model to the task of prepositional
phrase attachment, obtaining an accuracy of
87.54%.

1. Introduction

Word dependency or co-occurrence probabilities are
needed in many natural language tasks. This includes
lexicalized parsing, building language models, word
sense disambiguation, and information retrieval. How-
ever, it is difficult to estimate these probabilities be-
cause of the extreme sparseness of data for individ-
ual words, and even more so for word pairs, triples,
and so on. For instance, Bikel (2003) shows that the
parser of Collins (1999) is able to use bi-lexical word
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dependency probabilities1 to guide parsing decisions
only 1.5% of the time; the rest of the time, it backs
off to condition one word on just phrasal and part-of-
speech categories. If a system could be built with rea-
sonably accurate knowledge about dependency proba-
bilities between all words, one would expect the per-
formance gains on many tasks to be substantial.

Sophisticated back-off and interpolation methods have
been developed for language modeling (Goodman,
2001). Dagan et al. (1999) showed that performance
on zero-count events can be greatly improved if the
model includes estimates based on distributional sim-
ilarity. Other kinds of similarity among words have
also been used to reduce sparseness. For instance,
stemming words is a very traditional way of somewhat
lessening sparseness, and resources like WordNet have
been used in many natural language models.

All of these ways of using associations and similar-
ities between words to predict the likelihood of un-
seen events have their advantages. Symbolic knowl-
edge bases, such as WordNet, have the advantage of
being based on abundant world knowledge and hu-
man intuition, but have the disadvantages of having
incomplete coverage and being non-probabilistic. Us-
ing stemming or lemmatized words has been helpful
for reducing sparseness in some problems, and slightly
harmful in others (Hull, 1996).

Here, we propose a method for combining these in-
formation sources that induces a distribution over
words by learning a Markov chain (random walk)
model, where the states correspond to words, such
that its stationary distribution is a good model for
a specific word-distribution modeling task. The idea
of constructing Markov chains whose stationary dis-
tributions are informative has been seen in several
other applications, such as the Google PageRank al-
gorithm (Brin & Page, 1998), some HITS (Kleinberg,
1998)-like link analysis algorithms (Ng et al., 2001),

1Bi-lexical probabilities include two words, one in the
conditioning context and one in the future, in addition to
possibly other variables, for example, P (salad|eat, V, V P ).



and for query expansion in IR (Lafferty & Zhai, 2001).
Our work is distinguished from these approaches in
that rather than using a carefully hand-picked Markov
chain, we will automatically learn the parameters for
the random walk. This allows us to construct Markov
chains with many more parameters, that are much
richer in structure and of significantly greater com-
plexity than seen in other applications. In doing so,
we can also allow our model to learn to exploit di-
verse knowledge sources such as WordNet, morphol-
ogy, and various features of words derived from depen-
dency relations; all of these simply become additional
“features” made available to the random walk learning
algorithm. The proposed techniques are general and
can be applied to other problem domains, such as the
web, citation, and clickstream data.

In this paper, we choose deciding the attachment site
of Prepositional Phrases (PPs) as a touchstone prob-
lem, and show how random walk methods can be ap-
plied to this problem. PP attachment decisions are a
central component problem in parsing and one of the
major sources of ambiguity in practice. For example,
in the sentence: He broke the window with a hammer,
the prepositional phrase with a hammer could either
modify the verb broke, and thus mean that the ham-
mer was the instrument of the breaking event, or it
could modify the noun window and thus mean that
the window perhaps had a stained glass rendition of a
hammer in it. People immediately recognize the more
plausible meaning using their world knowledge, but
this knowledge is not readily available to parsers. Pre-
vious research has shown that by using statistics of
lexical co-occurrences, much higher accuracy can be
achieved in comparison to approaches that only look
at structure (such as preferring attachment to a verb
or the closer word, etc.) (Hindle & Rooth, 1993).

2. Preliminaries

We briefly review Markov chains (MC). For a more
detailed treatment, see, e.g., (Brémaud, 1999).

A MC over a set of states S is specified by an initial
distribution p0(S) over S, and a set of state tran-
sition probabilities p(St|St−1). A Markov chain de-
fines a distribution over sequences of states, via a gen-
erative process in which the initial state S0 is first
sampled from according to p0, and then states St (for
t = 1, 2, . . .) are sampled in order according to the
transition probabilities. The stationary distribution
of a MC is given by π(s) = limt→∞ P (St = s), if the
limit exists.

The MCs used in (Brin & Page, 1998; Ng et al., 2001)
have the property that on each step, there is a proba-
bility γ > 0 of resetting according to the initial state
distribution p0. Thus, the state transition probabili-

ties can be written

p(St|St−1) = γp0(St) + (1− γ)p′(St|St−1) (1)

for some appropriate p′. This ensures that the MC has
a unique stationary distribution (Brémaud, 1999), and
in practice also prevents the chain from getting stuck
in small loops (Brin & Page, 1998).

Given a MC as described above, we can construct
another MC S′0, S

′
1, . . . with the initial state S′0 dis-

tributed according to p0, and state transitions given
by the p′ in Equation (1). It is straightforward to
show that

π(s) = γ
∑∞

t=0
(1− γ)tP (S′t = s) (2)

where π here is the stationary distribution of the orig-
inal MC S0, S1, . . .. Equation 2 can be used to effi-
ciently compute π. Also, because terms corresponding
to large t have very little weight (1 − γ)t, when com-
puting π, this sequence may be truncated after the
first few (on the order 1/γ) terms without incurring
significant error.

Equation (2) gives a useful alternative view of π. Con-
sider a random process in which the state S0 is ini-
tialized according to p0. On each time step t, with
probability γ we “stop” the chain and output the cur-
rent state St; and with probability 1 − γ, we till take
a state transition step and sample St+1 according to
the transition probabilities p′(St+1|St). This process
is continued until the chain is stopped and a state is
output. Because the number of steps T taken in the
chain until it is stopped is distributed according to a
geometric distribution with parameter (1− γ), we can
see using Equation (2) that the random state output
by this process will also be distributed according to π.

For the application considered in this paper, it will
be useful to consider a generalization of this random
process. Specifically, we will construct an MC where,
once we have decided to stop the MC (which happens
with probability γ on each step), we will allow the
state to transition one final time according to a new set
of transition probabilities p′′(St+1|St) (different from
the transition probabilities used in the earlier steps
of the walk), and finally output St+1. Note that if
p′′(St+1|St) = 1 iff St+1 = St, this reduces to the sim-
pler type of random walk described earlier. In Section
3 we will see how permitting an extra state-transition
step at the end allows us to build significantly more
expressive models.

3. Random walks for PP attachment

3.1. The PP attachment model

Following most of the literature on Prepositional
Phrase (PP) attachment (e.g., Collins & Brooks, 1995;



Table 1. The sparsity of the data: the percent of times
tuples in the test set had appeared in the training set.

Factor % Non-Zero

Verbal P (p, va) 99.8
P (v|p, va) 64.8
P (n1|p, va, v) 15.7
P (n2|p, v, va) 13.8

Stetina & Nagao, 1997; Harabagiu & Pasca, 1999;
Pantel & Lin, 2000; Brill & Resnik, 1994), we focus on
the most common configuration that leads to ambigu-
ities: V NP PP. Here, working bottom-up in parsing,
the goal is to determine if the PP should be attached
to the verb or to the object noun phrase. Previous
work has shown the central (but not exclusive) role
played by the head words of phrases in resolving such
ambiguities, and we follow common practice in rep-
resenting the problem using only the head words of
these constituents and of the NP inside the PP. For
example, given the tuple:

(3) v:hang n1:painting p:with n2:nail

we would like to determine if the prepositional phrase
with nail should modify the verb hang, or the noun
phrase headed by painting. Here, clearly, with (a) nail
modifies the verb hang.

We start by building a generative model for the prob-
ability of the sequence of four head words and the at-
tachment site P (V,N1, P,N2,Att), where V is a verb,
P a preposition, and N1 and N2 are the two head
nouns involved in the attachment problem. The vari-
able Att has as value either va (for verbal attachment)
or na (nominal/noun attachment). Using a model for
this joint distribution, we can compute the conditional
distribution P (Att |V,N1, P,N2) and use that to pre-
dict the more likely attachment type.

The model makes only two context-specific indepen-
dence assumptions: that given a verbal attachment,
the second noun is independent of the first noun, and
that given a nominal attachment, the second noun is
independent of the verb. More specifically, the model
decomposition is as follows:

P (v, n1, p, n2, va) =

P (p, va)P (v|p, va)P (n1|p, va, v)P (n2|p, v, va) (4)

P (v, n1, p, n2,na) =

P (p,na)P (v|p,na)P (n1|p,na, v)P (n2|p, n1,na) (5)

Each of the factors above, except for P (p,Att), are
estimated using random walks.

To illustrate the degree of data sparsity for this prob-
lem, Table 1 shows the percentage of test cases for
which we had a non-zero relative frequency estimate
from the training set for each of the factors needed for

Equation 4. As can be seen, for the factors involv-
ing two words in addition to the preposition, more
than 3/4 of the time we have not seen the tuple in the
training set.

3.2. Random walks

We now describe our random walk model for the word
dependency distributions needed for equations 4–5.
We illustrate with the case of estimating P (n2|p, v, va).
Instantiating the example in (3), this is P (N2 =
nail |P = with, V = hang , va), the probability that,
given hang is modified by a PP whose head is with,
nail is the head of the noun phrase governed by with.
This is strictly a tri-lexical dependency, but because
prepositions can often be regarded as just a marker of
the semantic role of their object noun phrase, we can
informally think of this as estimating the probability
of a particular sort of semantic dependency; here it
is the likelihood of n2:nail bearing a with-type depen-
dency to the word v:hang. Thus, given the preposition,
we can view this as estimating a bi-lexical dependency
between a verb v and a noun n2.

We will estimate this probability using a Markov chain.
More precisely, we will construct a MCM (whose tran-
sition probabilities will depend on p, v, and the fact
that Att = va) so that its stationary distribution π is
a good approximation to P (n2|p, v, va).

We let the state space S of our random walk be
W × {0, 1}, where W is the set of all words. Thus,
a state is a pair consisting of a word and a single “bit”
taking on a value of 0 or 1. As we will shortly see, the
extra memory bit allows our walk to “remember” if the
word in the current state is a head (0) or a dependent
(1), and will permit us to build richer models.2 For
P (n2|p, v, va), v is a head, and n2 is a dependent (and
the type of the dependency relationship is indicated
by p). Below we will write (nail, 1) as dnail, both for
brevity, and to remind us of the extra bit’s meaning.

The initial distribution p0 of our Markov chain puts
probability 1 on the state hv (i.e., we always start at
the state for the head verb, with the bit-value 0).

Let us first walk through some cases using the “hang
painting with nail” example, with the small random
walk model shown in figure 1. For the sake of this
example, it will be convenient to begin with the case
of T = 1. We are trying to estimate

p(N2 = nail |V = hang , P = with,Att = va). (6)

If, in a training set of disambiguated PP-attachment
examples, we have seen the event (V = hang , P =

2Other examples of Markov chains that can be thought
of as random walks with an extra memory bit include (Laf-
ferty & Zhai, 2001; Ng et al., 2001).



with,Att = va) before, then clearly one possible es-
timate for the probability in (6) might be given by
its empirical distribution. Specifically, if nail was
frequently seen in the context of the event (V =
hang , P = with,Att = va), then we would like to as-
sign a large probability to this event. One way to
ensure that the random walk frequently visits nail
in this setting is therefore to have the probability
of transitioning from the initial state to some other
state dw, representing a dependent word, be mono-
tonically increasing in the empirical distribution of
p(N2 = w|V = hang , P = with,Att = va).

Now, suppose that, because of data sparseness prob-
lems, we have not seen “v:hang p:with n2:nail” in our
training set, but that we have seen “v:hang p:with
n2:nails” several times. Further, our stemmer indi-
cates that nail and nails have the same root form. In
this setting, we would still like to be able to assign
a high probability to p(nail |hang ,with, va). I.e., we
want π to give dnail a large probability. Using the state
transitions described above, we already have a large
probability of visiting dnails. If our random walk now
gives a large probability of transitioning from dnails to
dnail, then we would be done. More broadly, we would
like our random walk to be able to make a transition
from (w1, b1) to (w2, b2), if w1 and w2 are words with
the same root form, and b1 = b2.

Similarly, if we know that p(rivet |hang ,with, va) has
a large probability, and if some external knowl-
edge source tells us that rivet and nail are seman-
tically closely related, then we should infer that
p(nail |hang ,with, va) should also be fairly large. This
can be done by using a thesaurus, or a resource like
WordNet, a large collection of words classified into a
set of senses (synsets), which are organized in a hier-
archy, and permitting transitions between (w1, b1) and
(w2, b2) if an external knowledge source tells us that
w1 and w2 are related, and b1 = b2.

3

More broadly, we have outlined above several different
“types” of inferences that can be made about what tu-
ples v, p, n2 are likely. These types of inferences often
exploit external knowledge sources (such as a stemmer,
or WordNet), and we have shown several examples of
how they can be encoded into a random walk frame-
work, so that the stationary distribution gives a large
probability to events that we would like our procedure
to conclude are likely. Note in particular that if there

3Of course, some of these could lead to incorrect
inferences—even though hang with nail may be likely, and
WordNet indicates that nail and nail-polish are semanti-
cally related, it is incorrect to infer that hang with nail-
polish is therefore likely. However, we will later describe
how a learning algorithm is used to automatically decide
the degree to which each of these inferences can be trusted.

hang nail

fasten rivet

nails

hook

hooks

Figure 1. A small words state space for learning the distri-
bution Pwith(n2|v).

are multiple paths to a node, then that “reinforces” a
particular conclusion. By combining multiple steps of
these inferences together, in figure 1, we should be able
to conclude that if (a) hang with hook, (b) fasten with
hook and (c) fasten with rivet are likely; that (d) hooks
and hook have the same root, and if (e) rivet and nail
are semantically related, then fasten with nail is also
likely. Specifically, the sequence of states the random
walk might visit based on this information is hhang

a
→

dhooks
d
→ dhook

b
→ hfasten

c
→ drivet

e
→ dnail. Thus, by

considering multiple steps of the random walk, we can
combine multiple steps of inference together. But the
model by its nature also captures that long multi-step
chains do not give much support to their conclusion.

3.3. Formal model

We now describe our model formally. Our Markov
chain’s transition probabilities are built up using a set
of different links, which should be thought of as “ba-
sic” transition distributions that correspond to differ-
ent possible inference steps.

Each link type always leads from states where the
memory bit takes on some particular value b1 to states
where the bit takes on a value b2 (not necessarily dif-
ferent from b1). The final transition distribution will
then be a mixture of the basic transition distributions,
where the mixture weights are learned automatically.

Let the links l1, . . . , lk be given by transition matrices
T 1, . . . , T k. Each matrix T i has rows for states with
memory bits startBit(i) and its rows are distributions
over successor states with memory bit endBit(i).

The probability of transitioning from (w, b) to (w′, b′)



in the Markov chain is given by:

P (w′, b′|w, b) =
∑

i:startBit(i)=b,endBit(i)=b′

λ(w, b, i)T i(w′, b′|w, b)

The parameter λ(w, b, i) is the weight of link li for the
state (w, b). It can also be viewed as the probabil-
ity of taking a link of type li given the current state
(w, b). The probabilities λ(w, b, i) sum to 1 over all
links li having a starting bit startBit(i) = b. Parame-
ters of this form for all states are estimated automat-
ically from data. Since estimating separate param-
eters for each word would introduce too much spar-
sity, we define equivalence classes of states for which
we tie the parameters. To avoid constrained opti-
mization, we handled the constraints

∑

i λ(w, b, i) =
1,∀w, b and λ(w, b, i) ≥ 0 by representing λ(w, b, i) =

eγ(w,b,i)/
∑

i′ e
γ(w,b,i′). The new model parameters are

the γ(w, b, i) and they are not constrained.

As mentioned in Section 2, we also add one more re-
finement to the model, by further distinguishing be-
tween two different kinds of links: ones that can be
followed at any time, and ones that can be taken only
in a final (T -th) step of the walk. We call the lat-
ter type final links. The intuition here is that (due
to the usual sparseness in NLP data) we do wish to
include in our model distributions that back off from
conditioning on individual words and that therefore
can transition to a highly-smoothed model. But, it
would be undesirable to allow transitions to backed-
off distributions throughout the random walk. Specif-
ically, allowing such transitions would cause us to lose
the intuition of the random walk as exploring close
neighbors of a word based on some similarity criterion.
An additional advantage of having a special stopping
distribution is that we can disable transitions to states
that don’t have the desired memory bit; for example if
the random walk is estimating P (N2|v, p, va), the last
state has to be a dependent. Thus in a final step of the
walk, the probability of following a link type leading
to a non-dependent state is fixed to zero.

Thus we learn two different transition distributions of
the Markov chain — a distribution P nfin(w′, b′|w, b),
and a distribution P fin(w′, b′|w, b). The final links
participate only in P fin, whereas the other links par-
ticipate in both P fin and Pnfin.

The parameters of the model were fitted to optimize
the conditional log-likelihood of the correct attach-
ment sites for a development set of samples, disjoint
from the training and test sets, including quadratic
regularization. That is, we maximized the objective:

∑

i=1,...,N

logP (Atti|vi, n1
i, pi, n2

i)− λ
∑

s=1,...,k

γs
2

Here i ranges over the sample set, and s ranges over
the model parameters. We performed the optimization
using a limited memory quasi-Newton method.

The number of parameters depends on the scheme for
defining equivalence classes over states. The param-
eters correspond to distributions over link types for
states and stopping probabilities. The stopping prob-
abilities can also depend on the particular Markov
chain. We experimented with binning the parameters
based on observed number of times of occurrence of
words but the simplest model having a single equiva-
lence class performed on average as well as the more
complex models.

3.4. Link types for PP attachment

For modeling P (N2|p, v, va), we have separate Markov
chain transition matrices for each preposition p, with
the link types given below. The initial state distribu-
tion places probability 1 on the state hv. The first
eight link types are:

1. V → N. Transitions from hw1 to dw2 with proba-
bility proportional to the empirical probability of
p(N2 = w2|V = w1, p,Att). (L1)

2. Morphology. Transitions from (w1, b) to (w2, b)
for all words w2 that have the same root form as
w1, with probability proportional to the empirical
count of w2 plus a small smoothing parameter α.
(L2Nouns, L2Verbs)

3. WordNet Synsets. Transitions from states
(w1, b) to (w2, b), for all words w2 in the same
WordNet synonym-set as one of the top three
most common senses of w1, with probability pro-
portional to the empirical count of w2 plus a small
smoothing parameter α. (L3Nouns, L3Verbs)

4. N → V. Transitions from dw1 to hw2 with proba-
bility proportional to the empirical probability of
p(V = w2|N2 = w1, p,Att). (L4)

5. External corpus. Same as link L1, but the em-
pirical probabilities are measured from an addi-
tional set of noisy samples, generated automati-
cally by a statistical parser . (L5)

6. V → V. Transitions from hw1 to hw2 with proba-
bility proportional to their distributional similar-
ity with respect to dependents they take. This is
defined more precisely in Section 4.

7. N → N. Analogously to the previous link type,
these are transitions among nouns with probabil-
ity proportional to their distributional similarity
with respect to heads they modify.

8. V → V. Transitions from hw1 to hw2 with proba-
bility proportional to their distributional similar-
ity over noun objects when modified by p.



We also used the following final links to add at the end
over-smoothed back-off distributions. These represent
all levels in a linear back-off sequence estimated from
the training corpus, and a single level of back-off from
the additional corpus of noisy samples. Note that these
distributions are the same for every state:

9-12. Backoff1 through Backoff4 Transitions to
dw2 with probability proportional to P (N2 =
w2|P,Att), P (N2 = w2|Att), P (N2 = w2|.), and
uniform respectively. (L9,L10,L11,L12)

13. Backoff5. Transitions to dw2 with probabil-
ity proportional to P̂ (N2 = w2|P,Att) estimated
from the additional noisy corpus. (L13)

Additionally, we add identity links (self-loops), to
avoid situations where no link type can be followed.

4. Experiments

We work with the Penn Treebank Wall Street Jour-
nal data (Ratnaparkhi et al., 1994), which consists
of four-tuples of head words and a specification of
the type of attachment. There are 20,801 samples in
the training set, 4,039 in the development set, and
3,097 samples in the test set. This same data has
been used by several other researchers (Ratnaparkhi
et al., 1994; Collins & Brooks, 1995; Stetina & Nagao,
1997). The back-off model of (Collins & Brooks, 1995)
is the best-performing previously published algorithm
for the task of classifying samples by only using statis-
tics of word occurrences from the training corpus and
we use it as one of our baselines. Better results have
been reported on this test set by (Stetina & Nagao,
1997) (88.1%) and on other datasets by (Harabagiu &
Pasca, 1999), but the C&B algorithm is the clearest
established baseline of good performance, since it does
not rely on additional processing stages such as word
sense disambiguation or use of named entity recogniz-
ers. Previous studies of human performance suggest
an upper bound on attachment accuracy, given just
the four-tuple of head words, of 88.2% (Ratnaparkhi
et al., 1994). Therefore it is plausible to accept a Bayes
error of about 10% for this task.

Our algorithm uses the training set to estimate empir-
ical distributions and the development set to train the
parameters of the random walk. We report accuracy
results on the final test set.

In addition to this training data set, we generate ad-
ditional much noisier training data, using the BLLIP
corpus. BLLIP is a corpus of 1,796,386 automatically
parsed English sentences (Charniak, 2000). From the
parsed sentences, we extracted tuples of four head-
words and attachment site for ambiguous verbal or
noun PP attachments. This made for a total of 567,582
tuples. We will call this data-set BLLIP-PP. One

can expect this data to be rather noisy, since PP at-
tachment is one of the weakest areas for state of the
art statistical parsers. We pre-processed the data by
lower-casing the verbs and prepositions, and by sub-
stituting all digits with the X symbol.

For all models, we ran the Markov chain for at most
some d time steps (which may depend on the type
of links used); we call d the maximum degree of the
Markov chain. (I.e., Equation 2 is truncated after d
terms, and renormalized to sum to 1.) Accuracy re-
sults on the test set are shown in Table 2. The last
column of the table shows significant differences ac-
cording to McNemar’s test.

We first report the accuracy of the simplest walk of
maximum degree 1, which is of the same form as the
familiar linear mixture models. This walk estimates
the probability P (n2|p, v, va), using link types L1, L9,
L10, L11, and L12 as follows:

P (n2|p, v, va) = λ0(p, v, va)P̂ (n2|p, v, va)

+ λ1(p, v, va)P̂ (n2|p, va)

+ λ2(p, v, va)P̂ (n2|va)

+ λ3(p, v, va)P̂ (n2) + λ4(p, v, va)
1

V

Similar walks are constructed for all other factors
needed for the generative model. Since the maximum
degree is 1, only transitions according to a final distri-
bution P fin are taken P (n2|p, v, va) = P fin

p,va(n2|v).

This is our baseline model and we name it Baseline.
The accuracy results for the Baseline model are shown
in row 4 of table 2. It is worth noting that our sim-
ple generative model with linearly interpolated rela-
tive frequency estimates (and interpolation parameters
fitted discriminatively), performs better than the dis-
criminative back-off C&B algorithm (shown in row 1).
The last column shows that it is significantly better at
level .005 (p-value .0012).

Next we describe the incremental addition of links
to our model, with discussion of the performance
achieved. We fix the maximum degree of the walks
for estimating the uni-lexical dependencies P (v|p,Att)
to d = 2, and the maximum degree of all other walks,
estimating bi-lexical dependencies, to d = 3.4

1. Morphology. Adding a link between verbs
(L2Verbs) was helpful. This link was added
to the Markov chains for estimating P (V |p,Att),
P (N1|v, p,Att), and P (N2|v, p, va). The accuracy
on the test set was 86.08%, as shown in row 6 of

4For computational reasons, we have only explored
paths of maximum degree three for models with many fea-
tures. For smaller models, higher degree walks show an
advantage. Thoroughly investigating the contribution of
longer walks is left to future research.



Table 2. Summary of results on the final test set of 3,097 samples. In the significance column > means at level .05 and
À means at level .005.

Model Link Types Degree Accuracy Signif
Baselines 1 C&B 84.18%

2 C&B + stem verbs 84.50% not > 1
3 C&B on BLLIP-PP 85.53% > 1
4 Baseline L1,L8,L9,L10,L11 1,1 85.86% À 1
5 Baseline + stem verbs L1,L8,L9,L10,L11 1,1 86.02% À 2

Random 6 Morph Verbs + L2Verbs 2,3 86.08% not > 4, À 2
Walks 7 Morph Verbs and Nouns + L2Nouns 2,3 86.18% not > 4, À 2

8 Morphology & Synonyms +L3Verbs,L3Nouns 2,3 86.53% not > 4, À 2
9 SimJSβ Baseline +L2Verbs+L6,L7 2,3 86.44% not > 4, À 2

10 Final see text 2,3 87.54% > 9,À 3 ,À 4

Table 2. The accuracy of this model is slightly
better than the accuracy of Baseline ran on a
stemmed version of the corpus (shown in row 5).
Adding noun morphology as well was also helpful
as can be seen in row 7 of the table. The mod-
els with morphology are both significantly better
than the C&B algorithm trained and tested on
the data preprocessed by stemming verbs (shown
in row 2), but they are not significantly better
than Baseline.

2. WordNet Synsets. We use WordNet in a simple
way – for every word, we find its top three most
common senses, and make a link from the word to
all other words having those senses. We obtained
accuracy gains from adding the synonym links, as
can be seen in row 8 of the table. However, this
improvement over the baseline is not significant
at level .05. (It is significant at .1.)

3. Similarity based on Jensen-Shannon di-

vergence. We add links between states with
the same memory bit with transition probabili-
ties proportional to their distributional similar-
ity. For the sake of concreteness, consider a
random walk for estimating P (N2|p, v, va). Let
qv denote the empirical distribution of depen-
dents of the preposition p modifying verb v:
P̂ (N2|p, v, va) estimated from the BLLIP-PP cor-
pus. We define a similarity function between verbs
simJSβ (v1, v2) = exp(−βJS(qv1

, qv1
)). JS stands

for Jensen-Shannon divergence between two prob-
ability distributions (Rao, 1982) and is defined in
terms of the KL divergence D as:

JS(q1, q2) =
1
2{D(q1||avgq1,q2) +D(q2||avgq1,q2)}

The same similarity function was used in (Dagan
et al., 1999; Lee, 1999). We add a link from verbs
to verbs (link type L6) that has transitions from
each verb, to its top K closest neighbors in terms
of the similarity simJSβ .

5 The transition prob-

5In our experiments, β was 50, and K was 25.

ability is the normalized value of the similarity.
Similarly we add links between nouns based on
their similarity simJSβ with respect to the empir-

ical distribution P̂ (V |p, n, va) in BLLIP-PP (link
type L7).

Up until now we have been discussing the
P (N2|p, v, va) dependency distribution. For
the other dependency relations distributions –
P (N2|p, n1,na), and P (N1|p, v,Att), we simi-
larly add links between the heads based on their
simJSβ with respect to the empirical distribution
of their dependents in BLLIP-PP, and between
the dependents proportional to their similarity
simJSβ of head distributions. The accuracy of
the resulting model, when these links are added is
shown in row 9 of Table 2. This model does not
include the noun morphology and synonym fea-
tures as the model in row 8. We found that these
links were no longer helpful after the addition of
more powerful features.

4. Final Model. The major addition to the final
model is link L5, which is relative frequency esti-
mated from BLLIP-PP, and the backoff link L13,
also a relative frequency estimate from BLLIP-
PP.

The final model includes the links from the Base-
line, L5, L13, morphology for verbs, and the pre-
viously discussed simJSβ links. In addition, one
more kind of simJSβ links was added – L8.

Other algorithms can also make use of additional
noisy training data. We ran the C&B algorithm
on the union of the training data and BLLIP-PP
and its accuracy was also improved as shown in
row 2 of the table. However, the random walk
model is able to make better use of the additional
noisy data, as it learns suitable weights for the
estimates obtained from it.

Considering the relatively unsuccessful attempts
in the past to use additional unsupervised data to



improve lexical estimates for statistical parsers,
this result is very encouraging, and shows the im-
portance of learning proper weights for additional
noisy data.6

The final model had an accuracy of 87.54%, which
is close to the upper bound. According to the sta-
tistical significance tests, the final model is signif-
icantly better then the baseline, C&B trained
on the BLLIP-PP data, and model SimJSβ .

5. Discussion and conclusions

Random walk models provide a general framework for
unifying and combining various notions of similarity-
based smoothing. A walk of length 1 is just a linear
interpolation, with interpolation weights typically set
empirically as we do here (with the difference that we
train to maximize conditional rather than joint likeli-
hood). A walk of length 3 following exactly one for-
ward link (like L1), followed by one backward link (like
L4), and another forward link gives exactly the same
estimate as co-occurrence smoothing (Essen & Stein-
biss, 1992; Lee, 1999). A walk of length 2 using only
one kind of similarity between head states, and forward
links, is similar to distributional similarity smoothing
(Lee, 1999).

But the random walks framework that we propose is
much more general. A multitude of link types can be
defined in it, and they are automatically weighted by
the learning algorithm. Paths of shorter and longer
lengths can be followed (though the most highly con-
tributing paths are the shorter ones). The general-
ity of this approach to similarity-based smoothing not
only gives a high performance prepositional phrase at-
tachment system, but holds the promise of learning
complex but effective random walk models in other
domains.
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