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Abstract
We consider the problem of estimating detailed 3-d struc-

ture from a single still image of an unstructured environment.
Our goal is to create 3-d models which are both quantita-
tively accurate as well as visually pleasing.

For each small homogeneous patch in the image, we use a
Markov Random Field (MRF) to infer a set of “plane param-
eters” that capture both the 3-d location and 3-d orienta-
tion of the patch. The MRF, trained via supervised learning,
models both image depth cues as well as the relationships
between different parts of the image. Inference in our model
is tractable, and requires only solving a convex optimiza-
tion problem. Other than assuming that the environment is
made up of a number of small planes, our model makes no
explicit assumptions about the structure of the scene; this
enables the algorithm to capture much more detailed 3-d
structure than does prior art (such as Saxena et al., 2005,
Delage et al., 2005, and Hoiem et el., 2005), and also give
a much richer experience in the 3-d flythroughs created us-
ing image-based rendering, even for scenes with significant
non-vertical structure.

Using this approach, we have created qualitatively cor-
rect 3-d models for 64.9% of 588 images downloaded from
the internet, as compared to Hoiem et al.’s performance of
33.1%. Further, our models are quantitatively more accu-
rate than either Saxena et al. or Hoiem et al.

1. Introduction
When viewing an image such as that in Fig. 1a, a human

has no difficulty understanding its 3-d structure (Fig. 1b).
However, inferring the 3-d structure remains extremely chal-
lenging for current computer vision systems—there is an in-
trinsic ambiguity between local image features and the 3-d
location of the point, due to perspective projection.

Most work on 3-d reconstruction has focused on using
methods such as stereovision [16] or structure from mo-
tion [6], which require two (or more) images. Some methods
can estimate 3-d models from a single image, but they make
strong assumptions about the scene and work in specific set-
tings only. For example, shape from shading [18], relies on
purely photometric cues and is difficult to apply to surfaces
that do not have fairly uniform color and texture. Crimin-
isi, Reid and Zisserman [1] used known vanishing points to

Figure 1. (a) A single image. (b) A screenshot of the 3-d model
generated by our algorithm.

determine an affine structure of the image.
In recent work, Saxena, Chung and Ng (SCN) [13, 14]

presented an algorithm for predicting depth from monocular
image features. However, their depthmaps, although use-
ful for tasks such as a robot driving [12] or improving per-
formance of stereovision [15], were not accurate enough to
produce visually-pleasing 3-d fly-throughs. Delage, Lee and
Ng (DLN) [4, 3] and Hoiem, Efros and Hebert (HEH) [9, 7]
assumed that the environment is made of a flat ground with
vertical walls. DLN considered indoor images, while HEH
considered outdoor scenes. They classified the image into
ground and vertical (also sky in case of HEH) to produce a
simple “pop-up” type fly-through from an image. HEH fo-
cussed on creating “visually-pleasing” fly-throughs, but do
not produce quantitatively accurate results. More recently,
Hoiem et al. (2006) [8] also used geometric context to im-
prove object recognition performance.

In this paper, we focus on inferring the detailed 3-d struc-
ture that is both quantitatively accurate as well as visually
pleasing. Other than “local planarity,” we make no explicit
assumptions about the structure of the scene; this enables our
approach to generalize well, even to scenes with significant
non-vertical structure. We infer both the 3-d location and the
orientation of the small planar regions in the image using a
Markov Random Field (MRF). We will learn the relation be-
tween the image features and the location/orientation of the
planes, and also the relationships between various parts of
the image using supervised learning. For comparison, we
also present a second MRF, which models only the location
of points in the image. Although quantitatively accurate, this
method is unable to give visually pleasing 3-d models. MAP
inference in our models is efficiently performed by solving
a linear program.

Using this approach, we have inferred qualitatively cor-
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rect and visually pleasing 3-d models automatically for
64.9% of the 588 images downloaded from the internet, as
compared to HEH performance of33.1%. “Qualitatively
correct” is according to a metric that we will define later.
We further show that our algorithm predicts quantitatively
more accurate depths than both HEH and SCN.

2. Visual Cues for Scene Understanding
Images are the projection of the 3-d world to two

dimensions—hence the problem of inferring 3-d structure
from an image is degenerate. An image might represent an
infinite number of 3-d models. However, not all the possi-
ble 3-d structures that an image might represent are valid;
and only a few are likely. The environment that we live in is
reasonably structured, and hence allows humans to infer 3-d
structure based on prior experience.

Humans use various monocular cues to infer the 3-d
structure of the scene. Some of the cues are local proper-
ties of the image, such as texture variations and gradients,
color, haze, defocus, etc. [13, 17]. Local image cues alone
are usually insufficient to infer the 3-d structure. The ability
of humans to “integrate information” over space, i.e., under-
standing the relation between different parts of the image,is
crucial to understanding the 3-d structure. [17, chap. 11]

Both the relation of monocular cues to the 3-d structure,
as well as relation between various parts of the image is
learned from prior experience. Humans remember that a
structure of a particular shape is a building, sky is blue, grass
is green, trees grow above the ground and have leaves on top
of them, and so on.

3. Image Representation
We first find small homogeneous regions in the image,

called “Superpixels,” and use them as our basic unit of rep-
resentation. (Fig. 6b) Such regions can be reliably found us-
ing over-segmentation [5], and represent a coherent region
in the image with all the pixels having similar properties. In
most images, a superpixel is a small part of a structure, such
as part of a wall, and therefore represents a plane.

In our experiments, we use algorithm by [5] to obtain the
superpixels. Typically, we over-segment an image into about
2000 superpixels, representing regions which have similar
color and texture. Our goal is to infer the location and orien-
tation of each of these superpixels.

4. Probabilistic Model
It is difficult to infer 3-d information of a region from

local cues alone, (see Section 2) and one needs to infer the
3-d information of a region in relation to the 3-d information
of other region.

In our MRF model, we try to capture the following prop-
erties of the images:

• Image Features and depth: The image features of a

Figure 2. An illustration of the Markov Random Field (MRF) for
inferring 3-d structure. (Only a subset of edges and scales shown.)

superpixel bear some relation to the depth (and orienta-
tion) of the superpixel.

• Connected structure: Except in case of occlusion,
neighboring superpixels are more likely to be con-
nected to each other.

• Co-planar structure: Neighboring superpixels are
more likely to belong to the same plane, if they have
similar features and if there are no edges between them.

• Co-linearity: Long straight lines in the image represent
straight lines in the 3-d model. For example, edges of
buildings, sidewalk, windows.

Note that no single one of these four properties is enough,
by itself, to predict the 3-d structure. For example, in some
cases, local image features are not strong indicators of the
depth (and orientation). Thus, our approach will combine
these properties in an MRF, in a way that depends on our
“confidence” in each of these properties. Here, the “confi-
dence” is itself estimated from local image cues, and will
vary from region to region in the image.

Concretely, we begin by determining the places where
there is noconnectedor co-planar structure, by inferring
variablesyij that indicate the presence or absence of oc-
clusion boundaries and folds in the image (Section 4.1).
We then infer the 3-d structure using our “Plane Parameter
MRF,” which uses the variablesyij to selectively enforce
coplanar and connected structure property (Section 4.2).
This MRF models the 3-d location and orientation of the
superpixels as a function of image features.

For comparison, we also present an MRF that only mod-
els the 3-d location of the points in the image (“Point-wise
MRF,” Section 4.3) We found that our Plane Parameter MRF
outperforms our Point-wise MRF (both in quantitative and
visually pleasing aspects); therefore we will discuss Point-
wise MRF only briefly.

4.1. Occlusion Boundaries and Folds
We will infer the location of occlusion boundaries and

folds (places where two planes are connected but not co-
planar). We use the variablesyij ∈ {0, 1} to indicate



whether an “edgel” (the edge between two neighboring su-
perpixels) is an occlusion boundary/fold or not. The infer-
ence of these boundaries is typically not completely accu-
rate; therefore we will infersoft values foryij . More for-
mally, for an edgel between two superpixelsi andj, yij = 0
indicates an occlusion boundary/fold, andyij = 1 indicates
none (i.e., a planar surface). We modelyij using a logis-
tic response asP (yij = 1|xij ;ψ) = 1/(1 + exp(−ψTxij).
where, xij are features of the superpixelsi and j (Sec-
tion 5.2), andψ are the parameters of the model. During
inference (Section 4.2), we will use a mean field-like ap-
proximation, where we replaceyij with its mean value under
the logistic model.

4.2. Plane Parameter MRF
In this MRF, each node represents a superpixel in the im-

age. We assume that the superpixel lies on a plane, and we
will infer the location and orientation of that plane.
Representation: We parameterize both the location and ori-
entation of the infinite plane on which the superpixel lies

Figure 3. A 2-d illustration to ex-
plain the plane parameterα and
raysR from the camera.

by using plane parame-
ters α ∈ R

3. (Fig. 3)
(Any point q ∈ R

3 lying
on the plane with param-
etersα satisfiesαT q =
1.) The value1/|α| is the
distance from the cam-
era center to the closest
point on the plane, and
the normal vector̂α = α

|α| gives the orientation of the plane.
If Ri is the unit vector from the camera center to a pointi
lying on a plane with parametersα, thendi = 1/RT

i α is the
distance of pointi from the camera center.

Fractional depth error: For 3-d reconstruction, the frac-
tional (or relative) error in depths is most meaningful;
and is used in structure for motion, stereo reconstruction,
etc. [10, 16] For ground-truth depthd, and estimated depth
d̂, fractional error is defined as(d̂−d)/d = d̂/d− 1. There-
fore, we would be penalizing fractional errors in our MRF.

Model: To capture the relation between the plane param-
eters and the image features, and other properties such as
co-planarity, connectedness and co-linearity, we formulate
our MRF as

P (α|X,Y,R; θ) =
1

Z

∏

i

fθ(αi,Xi, yi, Ri)

∏

i,j

g(αi, αj , yij , Ri, Rj) (1)

where,αi is the plane parameter of the superpixeli. For
a total ofSi points in the superpixeli, we usexi,si

to denote
the features for pointsi in the superpixeli. Xi = {xi,si

∈
R

524 : si = 1, ..., Si} are the features for the superpixeli.
(Section 5.1) Similarly,Ri = {Ri,si

: si = 1, ..., Si} is the
set of rays for superpixeli.

Figure 4. An illustration to explain effect of the choice ofsi andsj

on enforcing the following properties: (a) Partially connected, (b)
Fully connected, and (c) Co-planar.

The first termf(.) models the plane parameters as a func-
tion of the image featuresxi,si

. We haveRT
i,si
αi = 1/di,si

(whereRi,si
is the ray that connects the camera to the 3-d lo-

cation of pointsi), and if the estimated deptĥdi,si
= xT

i,si
θr,

then the fractional error would be(RT
i,si
αi(x

T
i,si
θr) − 1).

Therefore, to minimize the aggregate fractional error over
all the points in the superpixel, we model the relation be-
tween the plane parameters and the image features as

fθ(αi,Xi, yi, Ri) = exp
(

−
∑Si

si=1 νi,si

∣

∣RT
i,si
αi(x

T
i,si
θr) − 1

∣

∣

)

The parameters of this model areθr ∈ R
524. We use

different parameters (θr) for each rowr in the image, be-
cause the images we consider are taken from a horizontally
mounted camera, and thus different rows of the image have
different statistical properties. E.g., a blue superpixelmight
be more likely to be sky if it is in the upper part of im-
age, or water if it is in the lower part of the image. Here,
yi = {νi,si

: si = 1, ..., Si} and the variableνi,si
indicates

the confidence of the features in predicting the depthd̂i,si
at

pointsi.1 If the local image features were not strong enough
to predict depth for pointsi, thenνi,si

= 0 turns off the
effect of the term

∣

∣RT
i,si
αi(x

T
i,si
θr) − 1

∣

∣.
The second termg(.) models the relation between the

plane parameters of two superpixelsi and j. It uses pairs
of pointssi andsj to do so:

g(.) =
∏

{si,sj}∈N hsi,sj
(.) (2)

We will capture co-planarity, connectedness and co-
linearity, by different choices ofh(.) and{si, sj}.

Connected structure: We enforce this constraint by
choosingsi andsj to be on the boundary of the superpix-
els i and j. As shown in Fig. 4b, penalizing the distance
between two such points ensures that they remain fully con-
nected. Note that in case of occlusion, the variablesyij = 0,
and hence the two superpixels will not be forced to be con-
nected. The relative (fractional) distance between pointssi

andsj is penalized by

hsi,sj
(αi, αj , yij , Ri, Rj) = exp

(

−yij |(R
T
i,si
αi −RT

j,sj
αj)d̂|

)

1The variableνi,si
is an indicator of how good the image features

are in predicting depth for pointsi in superpixel i. We learn νi,si

from the monocular image features, by estimating the expected value of
|di − xT

i θr|/di asφT
r xi with logistic response, withφr as the parameters

of the model, featuresxi anddi as ground-truth depths.



In detail,RT
i,si
αi = 1/di,si

andRT
j,sj

αj = 1/dj,sj
; there-

fore, the term(RT
i,si
αi −RT

j,sj
αj)d̂ gives the fractional dis-

tance|(di,si
− dj,sj

)/
√

di,si
dj,sj

| for d̂ =
√

d̂si
d̂sj

.

Figure 5. A 2-d illustration to explain the co-planarity term. The
distance of the pointsj on superpixelj to the plane on which su-
perpixeli lies along the rayRj,sj” is given byd1 − d2.

Co-planarity: We enforce the co-planar structure by
choosing a third pair of pointss′′i and s′′j in the center of
each superpixel along with ones on the boundary. (Fig. 4c)
To enforce co-planarity, we penalize the relative (fractional)
distance of points′′j from the plane in which superpixeli
lies, along the rayRj,s′′

j
(See Fig. 5).

h
s
′′

j

(αi, αj , yij , Rj,s′′

j
) = exp

(

−yij |(R
T
j,s′′

j
αi −RT

j,s′′

j
αj)d̂s′′

j
|
)

with hs′′

i
,s′′

j
(.) = hs′′

i
(.)hs′′

j
(.). Note that if the two super-

pixels are coplanar, thenhs′′

i
,s′′

j
= 1. To enforce co-planarity

between two distant planes that are not connected, we can
choose 3 pairs of points and use the above penalty.

Co-linearity: Finally, we enforce co-linearity constraint
using this term, by choosing points along the sides oflong
straight lines. This also helps to capture relations between
regions of the image that are not immediate neighbors.

Parameter Learning and MAP Inference: Exact param-
eter learning of the model is intractable; therefore, we use
Multi-Conditional Learning (MCL) for approximate learn-
ing, where we model the probability as a product of multiple
conditional likelihoods of individual densities. [11] We esti-
mate theθr parameters by maximizing the conditional like-
lihood logP (α|X,Y,R; θr) of the training data, which can
be written as a Linear Program (LP).

MAP inference of the plane parameters, i.e., maximiz-
ing the conditional likelihoodP (α|X,Y,R; θ), is efficiently
performed by solving a LP. To solve the LP, we implemented
an efficient method that uses the sparsity in our problem al-
lowing inference in a few seconds.

4.3. Point-wise MRF
We present another MRF, in which we use points in the

image as basic unit, instead of superpixels; and infer only
their 3-d location. The nodes in this MRF are a dense grid of
points in the image, where the value of each node represents
its depth. The depths in this model are in log scale to em-
phasize fractional (relative) errors in depth. Unlike SCN’s
fixed rectangular grid, we use a deformable grid, aligned

with structures in the image such as lines and corners to im-
prove performance. Further, in addition to using the con-
nected structure property (as in SCN), our model also cap-
tures co-planarity and co-linearity. Finally, we use logis-
tic response to identify occlusion and folds, whereas SCN
learned the variances.

In the MRF below, the first termf(.) models the relation
between depths and the image features asfθ(di, xi, yi) =
exp

(

−yi|di − xT
i θr(i)|

)

. The second termg(.) mod-
els connected structure by penalizing differences in
depth of neighboring points asg(di, dj , yij , Ri, Rj) =
exp (−yij |(Ridi −Rjdj)|). The third termh(.) depends
on three pointsi,j andk, and models co-planarity and co-
linearity. (Details omitted due to space constraints; see full
paper for details.)

P (d|X,Y,R; θ) =
1

Z

∏

i

fθ(di, xi, yi)
∏

i,j∈N

g(di, dj , yij , Ri, Rj)

∏

i,j,k∈N

h(di, dj , dk, yijk, Ri, Rj , Rk)

where,di ∈ R is the depth at a pointi. xi are the image
features at pointi. MAP inference of depths, i.e. maxi-
mizing logP (d|X,Y,R; θ) is performed by solving a linear
program (LP). However, the size of LP in this MRF is larger
than in the Plane Parameter MRF.

5. Features
For each superpixel, we compute a battery of features to

capture some of the monocular cues discussed in Section 2.
We also compute features to predict meaningful boundaries
in the images, such as occlusion. Note that this is in contrast
with some methods that rely on very specific features, e.g.
computing parallel lines on a plane to determine vanishing
points. Relying on a large number of different types of fea-
tures helps our algorithm to be more robust and generalize
to images that are very different from the training set.

5.1. Monocular Image Features
For each superpixel at locationi, we compute texture-

based summary statistic features, and superpixel shape and
location based features.2 (See Fig. 6.) We attempt to cap-
ture more “contextual” information by also including fea-
tures from neighboring superpixels (4 in our experiments),
and at multiple spatial scales (3 in our experiments). (See
Fig. 6.) The features, therefore, contain information from
a larger portion of the image, and thus are more expressive

2Similar to SCN, we use the output of each of the 17 (9 Laws masks,
2 color channels in YCbCr space and 6 oriented edges) filtersFn(x, y),
n = 1, ..., 17 as: Ei(n) =

P

(x,y)∈Si
|I(x, y) ∗ Fn(x, y)|k, where

k = 2,4 gives the energy and kurtosis respectively. This gives a total of 34
values for each superpixel. We compute features for a superpixel to improve
performance over SCN, who computed them for fixed rectangular patches.

Our superpixel shape and location based features included the shape and
location based features in Section 2.2 of [9], and also the eccentricity of the
superpixel.



Figure 6. The feature vector for a superpixel, which includes immediate and distant neighbors in multiple scales. (Best viewed in color.)

than just local features. This makes the feature vectorxi of
a superpixel524 dimensional.

5.2. Features for Boundaries
Another strong cue for 3-d structure perception is bound-

ary information. If two neighbor superpixels of an im-
age display different features, humans would often perceive
them to be parts of different objects; therefore an edge be-
tween two superpixels with distinctly different features,is a
candidate for a occlusion boundary or a fold. To compute the
featuresxij between superpixelsi andj, we first generate 14
different segmentations for each image for 2 different scales
for 7 different properties: textures, color, and edges. Each
element of our 14 dimensional feature vectorxij is then an
indicator if two superpixelsi andj lie in the same segmen-
tation. The featuresxij are the input to the classifier for the
occlusion boundaries and folds. (see Section 4.1)

6. Incorporating Object Information
In this section, we will discuss how our model can also in-

corporate other information that might be available, for ex-
ample, from object recognizers. In [8], Hoiem et al. used
knowledge of objects and their location to improve the esti-
mate of the horizon. In addition to estimating the horizon,
the knowledge of objects and their location in the scene gives
strong cues regarding the 3-d structure of the scene. For ex-
ample, a person is more likely to be on top of the ground,
rather than under it.

Here we give some examples of such constraints, and de-
scribe how we can encode them in our MRF:

(a) “Object A is on top of object B”
This constraint could be encoded by restricting the points
si ∈ R

3 on object A to be on top of the pointssj ∈ R
3

on object B, i.e.,sT
i ẑ ≥ sT

j ẑ (if ẑ denotes the “up” vector).
In practice, we actually use a probabilistic version of this
constraint. We represent this inequality in plane-parameter
space (si = Ridi = Ri/(α

T
i Ri)). To penalize the fractional

errorξ =
(

RT
i ẑR

T
j αj −RT

j ẑRiαi

)

d̂ (the constraint corre-
sponds toξ ≥ 0), we choose an MRF potentialhsi,sj

(.) =
exp (−yij (ξ + |ξ|)), whereyij represents the uncertainty in
the object recognizer output. Note that foryij → ∞ (corre-
sponding to certainty in the object recognizer), this becomes
a “hard” constraintRT

i ẑ/(α
T
i Ri) ≥ RT

j ẑ/(α
T
j Rj).

In fact, we can also encode other similar spatial-relations
by choosing the vector̂z appropriately. For example, a con-
straint“Object A is in front of Object B”can be encoded by
choosingẑ to be the ray from the camera to the object.

(b) “Object A is attached to Object B”
For example, if the ground-plane is known from a recog-
nizer, then many objects would be more likely to be “at-
tached” to the ground plane. We easily encode this by using
our connected-structure constraint (Section 4).

(c) Known plane orientation
If orientation of a plane is roughly known, e.g. that a person
is more likely to be “vertical”, then it can be easily encoded
by adding to Eq. 1 a termf(αi) = exp

(

−νi|α
T
i ẑ|

)

; here,νi

represents the confidence, andẑ represents the up vector.

We will describe our results using these constraints in
Section 7.3.

7. Experiments
7.1. Data collection

We used a custom-built 3-D scanner to collect images and
their corresponding depthmaps using lasers. We collected a
total of 534 images+depthmaps, with an image resolution of
2272x1704 and a depthmap resolution of 55x305; and used
400 for training our model.

We tested our model on 134 images collected using our
3-d scanner, and also on 588 internet images. The images on
the internet were collected by issuing keywords on Google
image search. To collect data and to perform the evaluation
of the algorithms in a completely unbiased manner, a person
not associated with the project was asked to collect images
of environments (greater than 800x600 size). The person
chose the following keywords to collect the images: campus,
garden, park, house, building, college, university, church,
castle, court, square, lake, temple, scene.

7.2. Results and Discussion
We performed an extensive evaluation of our algorithm

on 588 internet test images, and 134 test images collected
using the laser scanner.

In Table 1, we compare the following algorithms:
(a) Baseline: Both for depth-MRF (Baseline-1) and plane
parameter MRF (Baseline-2). The Baseline MRF is trained



Figure 7. (a) Original Image, (b) Ground truth depthmap, (c) Depth from image features only, (d) Point-wise MRF, (e) Plane parameter
MRF. (Best viewed in Color)
Table 1. Results: Quantitative comparison of various methods.

METHOD CORRECT % PLANES log10 REL

(%) CORRECT

SCN NA NA 0.198 0.530
HEH 33.1% 50.3% 0.320 1.423
BASELINE-1 0% NA 0.300 0.698
NO PRIORS 0% NA 0.170 0.447
POINT-WISE MRF 23% NA 0.149 0.458
BASELINE-2 0% 0% 0.334 0.516
NO PRIORS 0% 0% 0.205 0.392
CO-PLANAR 45.7% 57.1% 0.191 0.373
PP-MRF 64.9% 71.2% 0.187 0.370

without any image features, and thus reflects a “prior”
depthmap of sorts.
(b) Our Point-wise MRF: with and without constraints (con-
nectivity, co-planar and co-linearity).
(c) Our Plane Parameter MRF (PP-MRF): without any con-
straint, with co-planar constraint only, and the full model.
(d) Saxena et al. (SCN), applicable for quantitative errors.
(e) Hoiem et al. (HEH). For fairness, we scale and shift their
depthmaps before computing the errors to match the global
scale of our test images. Without the scaling and shifting,
their error is much higher (7.533 for relative depth error).

We compare the algorithms on the following metrics: (a)
Average depth error on a log-10 scale, (b) Average relative
depth error, (We give these numerical errors on only the 134
test images that we collected, because ground-truth depths
are not available for internet images.) (c) % of models qual-
itatively correct, (d) % of major planes correctly identified.3

Table 1 shows that both of our models (Point-wise MRF
and Plane Parameter MRF) outperform both SCN and HEH
in quantitative accuracy in depth prediction. Plane Parame-
ter MRF gives better relative depth accuracy, and produces
sharper depthmaps. (Fig. 7) Table 1 also shows that by cap-
turing the image properties of connected structure, copla-
narity and colinearity, the models produced by the algorithm
become significantly better. In addition to reducing quan-
titative errors, PP-MRF does indeed produce significantly
better 3-d models. When producing 3-d flythroughs, even a
small number of erroneous planes make the 3-d model vi-
sually unacceptable, even though the quantitative numbers

3We define a model as correct when for 70% of the major planes in the
image (major planes occupy more than 15% of the area), the plane is in
correct relationship with its nearest neighbors (i.e., therelative orientation
of the planes is within 30 degrees). Note that changing the numbers, such
as 70% to 50% or 90%, 15% to 10% or 30%, and 30 degrees to 20 or 45
degrees, gave similar trends in the results.

Table 2. Percentage of images for which HEH is better, our PP-
MRF is better, or it is a tie.

ALGORITHM %BETTER

TIE 15.8%
HEH 22.1%
PP-MRF 62.1%

may still show small errors.
Our algorithm gives qualitatively correct models for

64.9% of images as compared to33.1% by HEH. The qual-
itative evaluation was performed by a person not associ-
ated with the project following the guidelines in Footnote 3.
HEH generate a “photo-popup” effect by folding the im-
ages at “ground-vertical” boundaries—an assumption which
is not true for a significant number of images; therefore, their
method fails in those images. Some typical examples of the
3-d models are shown in Fig. 8. (Note that all thetestcases
shown in Fig. 1, 8 and 9 are from the dataset downloaded
from the internet, except Fig. 9a which is from the laser-test
dataset.) These examples also show that our models are of-
ten more detailed than HEH, in that they are often able to
model the scene with a multitude (over a hundred) of planes.

We performed a further comparison to HEH. Even when
both HEH and our algorithm is evaluated as qualitatively
correct on an image, one result could still be superior. There-
fore, we asked the person to compare the two methods, and
decide which one is better, or is a tie.4 Table 2 shows that our
algorithm performs better than HEH in62.1% of the cases.
Full documentation describing the details of the unbiased
human judgment process, along with the 3-d flythroughs
produced by our algorithm and HEH, is available online at:

http://ai.stanford.edu/∼asaxena/reconstruction3d
Some of our models, e.g. in Fig. 9j, have cosmetic

defects—e.g. stretched texture; better texture rendering tech-
niques would make the models more visually pleasing. In
some cases, a small mistake (i.e., one person being detected
as far-away in Fig. 9h) makes the model look bad; and hence
be evaluated as “incorrect.”

Our algorithm, trained on images taken in a small
geographical area in our university, was able to predict

4To compare the algorithms, the person was asked to count the number
of errors made by each algorithm. We define an error when a major plane in
the image (occupying more than 15% area in the image) is in wrong location
with respect to its neighbors, or if the orientation of the plane is more than
30 degrees wrong. For example, if HEH fold the image at incorrect place
(see Fig. 8, image 2), then it is counted as an error. Similarly,if we predict
top of a building as far and the bottom part of building near, making the
building tilted—it would count as an error.



Figure 8. Typical results from HEH and our algorithm.Row 1: Original Image. Row 2: 3-d model generated by HEH,Row 3 and
4: 3-d model generated by our algorithm. (Note that the screenshots cannot be simply obtained from the original image by an affine
transformation.) Inimage 1, HEH makes mistakes in some parts of the foreground rock, while our algorithm predicts the correct model;
with the rock occluding the house, giving a novel view. Inimage 2, HEH algorithm detects a wrong ground-vertical boundary; while
our algorithm not only finds the correct ground, but also captures a lotof non-vertical structure, such as the blue slide. Inimage 3, HEH
is confused by the reflection; while our algorithm produces a correct 3-d model. Inimage 4, HEH and our algorithm produce roughly
equivalent results—HEH is a bit more visually pleasing and our model is a bit more detailed. Inimage 5, both HEH and our algorithm fail;
HEH just predict one vertical plane at a incorrect location. Our algorithmpredicts correct depths of the pole and the horse, but is unable to
detect their boundary; hence making it qualitatively incorrect.

Figure 10. (Left) Original Images, (Middle) Snapshot of the 3-d
model without using object information, (Right) Snapshot of the
3-d model that uses object information.

qualitatively correct 3-d models for a large variety of
environments—for example, ones that have hills, lakes, and
ones taken at night, and even paintings. (See Fig. 9 and the
website.) We believe, based on our experiments varying the
number of training examples (not reported here), that hav-
ing a larger and more diverse set of training images would
improve the algorithm significantly.

7.3. Results using Object Information
We also performed experiments in which information

from object recognizers was incorporated into the MRF for
inferring a 3-d model (Section 6). In particular, we im-
plemented a recognizer (based on the features described in
Section 5) for ground-plane, and used the Dalal-Triggs De-
tector [2] to detect pedestrains. For these objects, we en-
coded the (a), (b) and (c) constraints described in Section 6.
Fig. 10 shows that using the pedestrian and ground detector
improves the accuracy of the 3-d model. Also note that using
“soft” constraints in the MRF (Section 6), instead of “hard”
constraints, helps in estimating correct 3-d models even if
the object recognizer makes a mistake.

8. Conclusions
We presented an algorithm for inferring detailed 3-d

structure from a single still image. Compared to previ-
ous approaches, our model creates 3-d models which are
both quantitatively more accurate and more visually pleas-
ing. We model both the location and orientation of small



Figure 9. Typical results from our algorithm. Original image (top), and ascreenshot of the 3-d flythrough generated from the image (bottom
of the image). The first 7 images (a-g) were evaluated as “correct” and the last 3 (h-j) were evaluated as “incorrect.”

homogenous regions in the image, called “superpixels,” us-
ing an MRF. Our model, trained via supervised learning,
estimates plane parameters using image features, and also
reasons about relationships between various parts of the im-
age. MAP inference for our model is efficiently performed
by solving a linear program. Other than assuming that
the environment is made of a number of small planes, we
do not make any explicit assumptions about the structure
of the scene, such as the “ground-vertical” planes assump-
tion by Delage et al. and Hoiem et al.; thus our model is
able to generalize well, even to scenes with significant non-
vertical structure. We created visually pleasing 3-d models
autonomously for64.9% of the 588 internet images, as com-
pared to Hoiem et al.’s performance of33.1%. Our models
are also quantitatively more accurate than prior art. Finally,
we also extended our model to incorporate information from
object recognizers to produce better 3-d models.
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