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Abstract

We address the problem of segmenting 3D scan data
into objects or object classes. Our segmentation framework
is based on a subclass of Markov Random Fields (MRFs)
which support efficient graph-cut inference. The MRF mod-
els incorporate a large set of diverse features and enforce
the preference that adjacent scan points have the same clas-
sification label. We use a recently proposed maximum-
margin framework to discriminatively train the model from
a set of labeled scans; as a result we automatically learn
the relative importance of the features for the segmentation
task. Performing graph-cut inference in the trained MRF
can then be used to segment new scenes very efficiently. We
test our approach on three large-scale datasets produced by
different kinds of 3D sensors, showing its applicability to
both outdoor and indoor environments containing diverse
objects.

1. Introduction

Range scanners have become standard equipment in mo-
bile robotics, making the task of 3D scan segmentation one
of increasing practical relevance. Given the set of points
(or surfaces) in 3D acquired by a range scanner, the goal
of segmentation is to attribute the acquired points to a set
of candidate objects or object classes. The segmentation
capability is essential for scene understanding, and can be
utilized for scan registration and robot localization.

Much work in vision has been devoted to the problem of
segmenting and identifying objects in 2D image data. The
3D problem is easier in some ways, as it circumvents the
ambiguities induced by the 3D-to-2D projection, but is also
harder because it lacks color cues, and deals with data which
is often noisy and sparse. The 3D scan segmentation prob-
lem has been addressed primarily in the context of detect-

ing known rigid objects for which reliable features can be
extracted (e.g., [11, 5]). The more difficult task of segment-
ing out object classes or deformable objects from 3D scans
requires the ability to handle previously unseen object in-
stances or configurations. This is still an open problem in
computer vision, where many approaches assume that the
scans have been already segmented into objects [10, 6].

An object segmentation algorithm should possess sev-
eral important properties. First, it should be able to take ad-
vantage of several qualitatively different kinds of features.
For example, trees may require very different features from
cars, and ground can be detected simply based on a “height”
feature. As the number of features grows, it becomes impor-
tant to learn how to trade them off automatically. Second,
some points can lie in generic-looking or sparsely sampled
regions, but we should be able to infer their label by enforc-
ing spatial contiguity, exploiting the fact that adjacent points
in the scans tend to have similar labels. Third, the algorithm
should adapt to the particular 3D scanner used, since differ-
ent scanners produce qualitatively different inputs. This is
particularly relevant, because real-world scans can violate
standard assumptions made in synthetic data used to evalu-
ate segmentation algorithms (e.g., [5, 10]).

In this paper we present a learning-based approach for
scene segmentation, which satisfies all of the properties de-
scribed above. Our approach utilizes a Markov random field
(MRF) over scan points in a scene to label each point with
one of some set of class labels; these labels can include dif-
ferent object types as well as background. We also assume
that, in our dataset, adjacent points in space are connected
by links. These links can be provided either by the scanner
(when it produces 3D meshes), or introduced by connect-
ing neighboring points in the scan. The MRF uses a set of
pre-specified features of scan points (e.g., spin images [11]
or height of the point) to provide evidence on their likely la-
bels. The links are used to relate the labels of nearby points,
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thereby imposing a preference for spatial contiguity of the
labels; the strength of these links can also depend on fea-
tures (e.g., distance between the linked points). We use a
subclass of MRFs that allow effective inference using graph
cuts [13], yet can enforce our spatial contiguity preference.

Our algorithm consists of a learning phase and a seg-
mentation phase. In the learning phase, we are provided a
set of scenes acquired by a 3D scanner. The scene points
are labeled with an appropriate class or object label. The
goal of the learning algorithm is to find a good set of fea-
ture weights. We use a maximum-margin learning approach
which finds the optimal tradeoff between the node and edge
features, which induce the MRF-based segmentation algo-
rithm to match the training set labels [21]. This learning
procedure finds the globally optimal (or nearly optimal)
weights and can be implemented efficiently.

In the segmentation phase, we need to classify the points
of a new scene. We compute the relevant point and edge
features, and run the graph-cut algorithm with the weights
provided by the learning phase. The inference procedure
performs joint classification of the scan points while en-
forcing spatial contiguity. The algorithm is very efficient,
scaling to scenes involving millions of points. It produces
the optimal solution for binary classification problems and
a solution within a fraction of the optimal for multi-class
problems [12].

We demonstrate the approach on two real-world datasets
and one computer-simulated dataset. These data sets span
both indoor and outdoor scenes, and a diverse set of object
classes. They were acquired using different scanners, and
have very different properties. We show that our algorithm
performs well for all three data sets, illustrating its applica-
bility in a broad range of settings, requiring different feature
sets. Our results demonstrate the ability of our algorithm to
del with significant occlusion and scanner noise.

2. Previous work

The problem of segmenting and classifying objects in 2D
scenes is arguably the core problem in machine vision, and
has received considerable attention. The existing work on
the problem in the context of 3D scan data can largely be
classified into three groups.

The first class of methods detects known objects in
the scene. Such approaches center on computing effi-
cient descriptors of the object shape at selected surface
points [11, 7, 5]. However, they usually require that the
descriptor parameters are specified by hand. Detection
often involves inefficient nearest-neighbor search in high-
dimensional space. While most approaches address detec-
tion of rigid objects, detection of nonrigid objects has also
been demonstrated [18].

Another line of work performs classification of 3D

shapes. Some methods (particularly those used for retrieval
of 3D models from large databases) use global shape de-
scriptors [6, 17], which require that a complete surface
model of the query object is available. Objects can also
be classified by looking at salient parts of the object surface
[10, 19]. All mentioned approaches assume that the surface
has already been pre-segmented from the scene.

Another set of approaches segment 3D scans into a set
of predefined parametric shapes. Han et al. [9] present a
method based for segmenting 3D images into 5 parametric
models such as planar, conic and B-spline surfaces. Unlike
their approach, ours is aimed at learning to segment the data
directly into objects or classes of objects. The parameters of
our model are trained on examples containing the objects,
while Han et al. assume a pre-specified generative model.

Our segmentation approach is most closely related to
work in vision applying conditional random fields (CRFs)
to 2D images. Discriminative models such as CRFs [15]
are a natural way to model correlations between classifi-
cation labels Y given a scan X as input. CRFs directly
model the conditional distribution P (Y | X). In classi-
fication tasks, CRFs have been shown to produce results
superior to generative approaches which expend efforts to
model the potentially more complicated joint distribution
P (X,Y) [15]. Very recently, CRFs have been applied
for image segmentation. Kumar et al. [14] train CRFs us-
ing a pseudo-likelihood approximation to the distribution
P (Y | X) since estimating the true conditional distribu-
tion is intractable. Unlike their work, we optimize a dif-
ferent objective called the margin, based on support vec-
tor machines [3]. Our learning formulation provides an ex-
act and tractable optimization algorithm, as well as formal
guarantees for binary classification problems. Unlike their
work, our approach can also handle multi-class problems in
a straightforward manner. In a very recent work, Torralba et
al. [23] propose boosting random fields for image segmen-
tation, combining ideas from boosting and CRFs. Similar
to our approach, they optimize the classification margin.
However, their implementation is specific to 2D image data,
which poses very different challenges than 3D scans.

3. Markov Random Fields

We restrict our attention to Markov networks (or random
fields) over discrete variables Y = {Y1, . . . , YN}, where
each variable corresponds to the label of a point in the 3D
scan and has K possible values: Yi ∈ {1, . . . , K}. An
assignment of values to Y is denoted by y. A Markov net-
work for Y defines a joint distribution over {1, . . . , K}N ,
defined by an undirected graph (V , E) over the nodes cor-
responding to the variables. In our task, the variables cor-
respond to the scan points in the scene, and their values to
their label, which can include different object types as well
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a) Robot and campus map b) Segmentation Results

SVM Voted-SVM AMN

Figure 1. a) The robot and a portion of a 3D scan range map of Stanford University. b) Scan seg-
mentation results obtained with SVM, Voted-SVM and AMN predictions. (Color legend: buildings/red,
trees/green, shrubs/blue, ground/gray).

as background. For simplicity of exposition, we focus our
discussion to pairwise Markov networks, where nodes and
edges are associated with potentials φi(Yi) and φij(Yi, Yj),
ij ∈ E (i < j). In our task, edges are associated with links
between points in the scan, corresponding to physical prox-
imity; these edges serve to correlate the labels of nearby
points. A node potential φi(Yi) specifies a non-negative
number for each value of the variable Yi. Similarly, an
edge potential specifies non-negative number for each pair
of values of Yi, Yj . Intuitively, a node potentials encodes a
point’s “individual” preference for different labels, whereas
the edge potentials encode the interactions between labels
of related points. The joint distribution specified by the net-
work is

Pφ(y) =
1

Z

N
∏

i=1

φi(yi)
∏

ij∈E

φij(yi, yj),

where Z is the partition function given by Z =
∑

y′

∏N

i=1
φi(y

′
i)

∏

ij∈E
φij(y

′
i, y

′
j). The maximum a-

posteriori (MAP) inference problem in a Markov network
is to find arg max

y
Pφ(y).

We further restrict our attention to an important sub-
class of networks, called associative Markov networks
(AMNs) [21] that allow effective inference using graph-
cuts [8, 13]. These associative potentials generalize the
Potts model [16], rewarding instantiations where adjacent
nodes have the same label. Specifically, we require that
φij(k, k) = λk

ij , where λk
ij ≥ 1, and φij(k, l) = 1, ∀k 6= l.

We formulate the node and edge potentials in terms of

the features of the objects xi ∈ IRdn and features of the re-
lationships between them xij ∈ IRde . In 3D range data, the
xi might be the spin image or spatial occupancy histograms
of a point i, while the xij might include the distance be-
tween points i and j, the dot-product of their normals, etc.
The simplest model of dependence of the potentials on the
features is log-linear combination: log φi(k) = wk

n · xi

and log φij(k, k) = wk
e · xij , where wk

n and wk
e are label-

specific row vectors of node and edge parameters, of size dn

and de, respectively. Note that this formulation assumes that
all of the nodes in the network share the same set of weights,
and similarly all of the edges share the same weights. Stat-
ing the AMN restrictions in terms of the parameters w, we
require that wk

e · xij ≥ 0. To ensure that wk
e · xij ≥ 0, we

simply assume that xij ≥ 0, and constrain wk
e ≥ 0.

The MAP problem for AMNs can be solved efficiently
using a min-cut algorithm. In the case of binary labels
(K = 2), the min-cut procedure is guaranteed to return
the optimal MAP. For K > 2, the MAP problem is NP-
hard, but a procedure proposed by Boykov et al. [1], which
augments the min-cut algorithm with an iterative procedure
called alpha-expansion, guarantees a factor 2 approxima-
tion of the optimal solution.

An alternative approach to solving the MAP inference
problem is based on formulating the problem as an inte-
ger program, and then using a linear programming relax-
ation [2, 12]. This approach is slower in practice than the
iterated min-cut approach, but has the same performance
guarantees [21]. Importantly for our purposes, it forms the
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basis for our learning procedure.
We represent an assignment y as a set of K ·N indicators

{yk
i }, where yk

i = I(yi = k). With these definitions, the
log of conditional probability log Pw(y | x) is given by:
N

∑

i=1

K
∑

k=1

(wk
n ·xi)y

k
i +

∑

ij∈E

K
∑

k=1

(wk
e ·xij)y

k
i yk

j − logZw(x).

Note that the partition function Zw(x) above depends on
the parameters w and input features x, but not on the labels
yi’s. Hence the MAP objective is quadratic in y.

For compactness of notation, we define the node and
edge weight vectors wn = (w1

n, . . . ,wK
n ) and we =

(w1

e , . . . ,w
K
e ), and let w = (wn,we) be a vector of all the

weights, of size d = K(dn + de). Also, we define the node
and edge labels vectors, yn = (. . . , y1

i , . . . , yK
i , . . .)> and

ye = (. . . , y1

ij , . . . , y
K
ij , . . .)>, where yk

ij = yk
i yk

j , and the
vector of all labels y = (yn,ye) of size L = K(N + |E|).
Finally, we define an appropriate d×L matrix X such that

log Pw(y | x) = wXy − log Zw(x).

The matrix X contains the node feature vectors xi and edge
feature vectors xij repeated multiple times (for each label
k), and padded with zeros appropriately.

The linear programming formulation of the MAP prob-
lem for these networks can be written as:

max

N
∑

i=1

K
∑

k=1

(wk
n · xi)y

k
i +

∑

ij∈E

K
∑

k=1

(wk
e · xij)y

k
ij (1)

s.t. yk
i ≥ 0, ∀i, k;

∑

k

yk
i = 1, ∀i;

yk
ij ≤ yk

i , yk
ij ≤ yk

j , ∀ij ∈ E , k.

Note that we substitute the quadratic terms yk
i yk

i by vari-
ables yk

ij by using two linear constraints yk
ij ≤ yk

i and
yk

ij ≤ yk
i . This works because the coefficient wk

e · xij is
non-negative and we are maximizing the objective function.
Hence yk

ij = min(yk
i , yk

i ) at the optimum, which is equiv-
alent to yk

ij = yk
i yk

j if yk
i , yk

j ∈ {0, 1}. In the binary case,
the linear program Eq. (1) is guaranteed to produce an in-
teger solution (optimal assignment) when a unique solution
exists [21]. For K > 2, the LP may produce fractional so-
lutions which are guaranteed to be within at most a factor
of 2 of the optimal.

4. Maximum margin estimation

We now consider the problem of training the weights
w of a Markov network given a labeled training instance
(x, ŷ). For simplicity of exposition, we assume that we
have only a single training instance; the extension to the
case of multiple instances is entirely straightforward. Note
that, in our setting, a single training instance is not a single
point, but an entire scene that contains tens of thousands of
points.

The standard approach of learning a conditional model
w given (x, ŷ) is to maximize the log Pw(ŷ | x), with
an additional regularization term, which is usually taken to
be the squared-norm of the weights w [15]. An alterna-
tive method, recently proposed by Taskar et al. [22], is to
maximize the margin of confidence in the true label assign-
ment ŷ over any other assignment y 6= ŷ. They show that
the margin-maximization criterion provides significant im-
provements in accuracy over a range of problems. It also al-
lows high-dimensional feature spaces to be utilized by using
the kernel trick, as in support vector machines. The maxi-
mum margin Markov network (M3N) framework forms the
basis for our work, so we begin by reviewing this approach.

As in support vector machines, the goal in an M3N is to
maximize our confidence in the true labels ŷ relative to any
other possible joint labeling y. Specifically, we define the
gain of the true labels ŷ over another joint labeling y as:

log Pw(ŷ | x) − log Pw(y | x) = wX(ŷ − y).

In M3Ns, the desired gain depends on the number of mis-
classified labels in y, `(ŷ,y), by scaling linearly with it:

max γ s.t. wX(ŷ − y) ≥ γ`(ŷ,y); ||w||2 ≤ 1.

Note that the number of incorrect node labels `(ŷ,y) can
also be written as N − ŷ>

n yn. (Whenever ŷi and yi agree
on some label k, we have that ŷk

i = 1 and yk
i = 1, adding

1 to ŷ>
n yn.) By dividing through by γ and adding a slack

variable for non-separable data, we obtain a quadratic pro-
gram (QP) with exponentially many constraints:

min
1

2
||w||2 + Cξ (2)

s.t. wX(ŷ − y) ≥ N − ŷ>
n yn − ξ, ∀y ∈ Y .

This QP has a constraint for every possible joint assign-
ment y to the Markov network variables, resulting in an
exponentially-sized QP.

As our first step, we replace the exponential set of linear
constraints in the max-margin QP of Eq. (2) with the single
equivalent non-linear constraint:

wXŷ − N + ξ ≥ max
y∈Y

wXy − ŷ>
n yn. (3)

This non-linear constraint essentially requires that we find
the assignment y to the network variables which has the
highest probability relative to the parameterization wX −
ŷ>

n . Thus, optimizing the max-margin QP contains the
MAP inference task as a component.

The LP relaxation of Eq. (1) provides us with precisely
the necessary building block to provide an effective solu-
tion for Eq. (3). The MAP problem is precisely the max
subproblem in this QP. In the case of AMNs, this max sub-
problem can be replaced with the LP of Eq. (1). In effect,
we are replacing the exponential constraint set — one which
includes a constraint for every discrete y, with an infinite
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constraint set — one which includes a constraint for every
continuous vector y in Y ′ = {y : yk

i ≥ 0;
∑

k yk
i =

1; yk
ij ≤ yk

i ; yk
ij ≤ yk

i }, as defined in Eq. (1).
After substituting the (dual of the) MAP LP into Eq. (3)

and some algebraic manipulation (see [21]), we obtain:

min
1

2
||w||2 + Cξ (4)

s.t. wXŷ − N + ξ ≥

N
∑

i=1

αi; we ≥ 0;

αi −
∑

ij,ji∈E

αk
ij ≥ wk

n · xi − ŷk
i , ∀i, k;

αk
ij + αk

ji ≥ wk
e · xij , αk

ij , α
k
ji ≥ 0, ∀ij ∈ E , k.

Above, we also added the constraint we ≥ 0 to ensure pos-
itivity of the edge log-potentials.

For K = 2, the MAP LP is exact, so that Eq. (4) learns
exact max-margin weights for Markov networks of arbi-
trary topology. For K > 2, the linear relaxation leads
to a strengthening of the constraints on w by potentially
adding constraints corresponding to fractional assignments
y. Thus, the optimal choice w, ξ for the original QP may no
longer be feasible, leading to a different choice of weights.
However, as our experiments show, these weights tend to do
well in practice.

The dual of Eq. (4) is given by:

max

N
∑

i=1

K
∑

k=1

(1 − ŷk
i )µk

i −
1

2

K
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

i=1

xi(Cŷk
i − µk

i )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

−
1

2

K
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λk +
∑

ij∈E

xij(Cŷk
ij − µk

ij)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

s.t. µk
i ≥ 0, ∀i, k;

∑

k

µk
i = C, ∀i;

µk
ij ≥ 0, µk

ij ≤ µk
i , µk

ij ≤ µk
j , ∀ij ∈ E , k;

λk ≥ 0, ∀k.

The primal and dual solution are related by:

wk
n =

N
∑

i=1

xi(Cŷk
i − µk

i ), (5)

wk
e = λk +

∑

ij∈E

xij(Cŷk
ij − µk

ij). (6)

One important consequence of these relationships is that the
node parameters are all support vector expansions. Thus,
the terms in the constraints of the form wnx can all be ex-
panded in terms of dot products x>

i xi; similarly, the objec-
tive (||w||2) can be expanded similarly. Therefore, we can
use kernels K(xi,xj) to define node parameters. Unfortu-
nately, the positivity constraint on the edge potentials, and
the resulting λk dual variable in the expansion of the edge
weight, prevent the edge parameters from being kernelized
in a similar way.

5. Experimental results

We validated our scan segmentation algorithm by ex-
perimenting on two real-world and one synthetic datasets,
which differed in both the type of 3D scanner used, and
the types of objects present in the scene. We describe each
set of experiments separately below. We compare the per-
formance of our method to that of support vector machines
(SVMs), a state-of-the-art classification method known
to work well in high-dimensional spaces. The webpage
http://ai.stanford.edu/˜drago/Projects/Detector/

contains additional results, including a fly-through movie.

Terrain classification. Terrain classification is useful for
autonomous mobile robots in tasks such as path plan-
ning, target detection, and as a pre-processing step for
other perceptual tasks. The Stanford Segbot Project
(http://robots.stanford.edu/) has provided us with a
laser range campus map collected by a robot equipped with
a SICK2 laser scanner (see Fig. 1). The robot drove around
a campus environment and acquired around 35 million scan
readings. Each reading was a point in 3D space, represented
by its coordinates in an absolute frame of reference, which
was fairly noisy due to sensor noise and localization errors.

Our task is to classify the laser range points into four
classes: ground, building, tree, and shrubbery. Classifying
ground points is trivial given their absolute z-coordinate;
we do it by thresholding the z coordinate at a value close
to 0. After this, we are left with approximately 20 million
non-ground points. Each point is represented simply as a
location in an absolute 3D coordinate system. The features
we use require pre-processing to infer properties of the lo-
cal neighborhood of a point, such as how planar the neigh-
borhood is, or how much of the neighbors are close to the
ground. We use features that are invariant to rotation in the
x-y plane, as well as the density of the range scan, since
scans tend to be sparser in regions farther from the robot.

Our first type of feature is based on the principal plane
around each point. To compute it, we sample 100 points in
a cube of radius 0.5 meters. We run PCA on these points
to get the plane, spanned by the first two principal compo-
nents. We then partition the cube into 3× 3× 3 bins around
the point, oriented with respect to the principal plane, and
compute the percentage of points lying in the various sub-
cubes. These percentages capture the local distribution well
and are especially useful in finding planes. Our second type
of feature is based on a column around each point. We take
a cylinder of radius 0.25 meters, which extends vertically
to include all the points in a “column”. We then compute
what percentage of the points lie in various segments of this
column (e.g., between 2m and 2.5m). Finally, we also use
an indicator feature of whether a point lies within 2m of
the ground. This feature is especially useful in classifying
shrubbery.
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             a) Training instance b) AMN c) SVM d) AMN with edges ignored 

e) f ) g) h)

Figure 2. Segmentation results on the puppet dataset. a) Training set instance b) AMN segmentation
result c) SVM segmentation result d) Result obtained by using the node weights learned by the AMN,
and ignoring the MRF edges e) - h) Segmentation results on other testing set instances. (Color
legend: head/green, torso/dark blue, limbs/red, background/gray).

For training we select roughly 30 thousand points that
represent the classes well: a segment of a wall, a tree,
some bushes. We considered three different models: SVM,
Voted-SVM and AMNs. All methods use the same set of
features, augmented with a quadratic kernel.

The first model is a multi-class SVM. This model
(Fig. 1(b), right panel) achieves reasonable performance in
many places, but fails to enforce local consistency of the
classification predictions. For example arches on buildings
and other less planar regions are consistently confused for
trees, even though they are surrounded entirely by build-
ings. We improved upon the SVM by smoothing its predic-
tions using voting. For each point we took its local neigh-
borhood and assigned the point the label of the majority of
its 100 neighbors. The Voted-SVM model (Fig. 1(b), mid-
dle panel) performs slightly better than SVM, yet it still fails
in areas like arches of buildings where the SVM classifier
has a locally consistent wrong prediction.

The final model is a pairwise AMN. Each point is con-
nected to 6 of its neighbors: 3 of them are sampled ran-
domly from the local neighborhood in a sphere of radius
0.5m, and the other 3 are sampled at random from the ver-
tical cylinder column of radius 0.25m. It is important to en-
sure vertical consistency since the SVM classifier is wrong
in areas that are higher off the ground (due to the decrease
in point density) or because objects tend to look different
as we vary their z-coordinate (for example, tree trunks and
tree crowns look different). While we experimented with
a variety of edge features, we found that even using only a
constant feature performs well.

We trained the AMN model using CPLEX to solve the
quadratic program; the training took about an hour on a Pen-
tium 3 desktop. For inference, we used min-cut combined
with the alpha-expansion algorithm of Boykov et al. de-
scribed above [1]. We split up the dataset into 16 square (in
the xy-plane) regions, the largest of which contains around
3.5 million points. The implementation is largely domi-
nated by I/O time, with the actual min-cut taking less than
a minute even for the largest segment.

We can see that the predictions of the AMN (Fig. 1 b),
left panel) are much smoother: for example building arches
and tree trunks are predicted correctly. We hand-labeled
around 180 thousand points of the test set and computed
accuracies of the predictions (excluding ground, which was
classified by pre-processing). The differences are dramatic:
SVM: 68%, Voted-SVM: 73% and AMN: 93%.

Segmentation of articulated objects. We also tested our
scan segmentation algorithm on a challenging dataset of
cluttered scenes containing articulated wooden puppets.
The dataset was acquired by a scanning system based on
temporal stereo [4]. The system consists of two cameras and
a projector, and outputs a triangulated surface only in the ar-
eas that are visible to all three devices simultaneously. The
dataset contains eleven different single-view scans of three
puppets of different sizes and in different positions. It also
contains clutter and occluding objects such as rope, sticks
and rings. Each scan has around 225, 000 points, which we
subsampled to around 7, 000 with standard software. Our
goal was to segment the scenes into 4 classes — puppet
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SVM

AMN

c) d)a) b)

Figure 3. Segmentation of vehicles (cars, trucks, suvs) from the background in synthetic range
scans from the Princeton dataset. The AMN performs reasonably well on most of the testing scenes,
as demonstrated in scenes a), b), and c). However, it sometimes fails to detect the vehicles in
challenging scenes such as d). (Color legend: vehicles/green, background/pink).

head, limbs, torso and background. Five of the scenes
comprise our training set, and the rest are kept for testing.
A sample scan from the training set is shown in Fig. 2a.

To segment articulated objects, it is desirable to have an
approach which is independent of global orientation alto-
gether, and which discriminates based on shape alone. We
used spin-images [11] as local point features. We computed
spin-images of size 10× 5 bins at two different resolutions.
We scaled the spin-image values, and performed PCA to
obtain 45 principal components, which comprised our point
features. We use the surface links output by the scanner
as edges in the MRF. Again, we experimented with several
different edge features, but we got the best performance by
using a constant feature for each edge.

Because of clutter and occlusion in the scenes, our AMN
framework achieves the best generalization performance
when we keep the scope of the spin-images rather small
(comparable to the size of the puppet’s head). Our scan
segmentation algorithm performed very well by classify-
ing 94.4% of the testing set points accurately, translating
into 83.9% recall and 86.8% precision on the task of de-
tecting puppet parts versus background. Overall, our results
(see Fig. 2e–h) show that AMNs can detect puppet parts
with a fairly high degree of accuracy, even under occlusion
and clutter. The main source of classification error was the
small puppet, which appears only in the testing set.

By comparison, the SVM method applied to the same
point features performs remarkably poorly (see Fig. 2c).
The classification accuracy on the testing set is 87.16%, but
that is because that the majority of points are classified as

background; indeed, overall the SVM approach achieves
93% precision but only 18.6% recall on the task of seg-
menting puppet parts against background. The poor per-
formance is caused by the relatively small spin-image size
which makes the algorithm more robust under clutter and
occlusion, but at the same time makes it hard to discrimi-
nate between locally similar shapes. The dataset has signif-
icant shape ambiguity, as it is very easy to confuse sticks for
limbs, and the torso for parts of the computer mouse appear-
ing in the testing set. We tried to obtain a fairer comparison
by changing the spin-image size to accommodate the SVM
algorithm. The results were still significantly worse.

To understand the reason underlying the superior per-
formance of the AMN, we ran a flat classifier with node
weights trained for the AMN model. The result, shown
in Fig. 2d, suggests that our algorithm has an additional de-
gree of flexibility — it can commit a lot of errors locally, but
rely on the edge structure to eliminate the errors in the final
result. This result demonstrates that our approach would be
superior to a strategy which trains the edge and the node
parameters separately.

Princeton benchmark. The final test of our system was
performed using a set of artificially generated scenes, which
contain different types of vehicles, trees, houses, and the
ground. Models of the objects in these scenes were ob-
tained from the Princeton Shape Benchmark [20], and were
combined in various ways to construct the training and test
scenes. From these, a set of synthetic range scans were gen-
erated by placing a virtual sensor inside the scene. We cor-
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rupted the ”sensor” readings with additive white noise. We
then triangulated the resulting point cloud, and subsampled
it down to our desired resolution.

We trained both the SVM and the AMN approaches to
distinguish vehicles from other objects and background. We
used exactly the same node and edge features as in the pup-
pet dataset, with the spin image size appropriately adjusted.
The results, shown in Fig. 3, demonstrate again that our
method outperforms the SVM method. In general, the AMN
method labels most of the points on the vehicles correctly.
Occasionally, the AMN method labels a flat part of a vehi-
cle as background, because in this area, the features are in-
distinguishable from a wall, and the edge potentials are not
strong enough to overcome this (see Fig. 3a). There are also
cases in which the AMN method fails, as in Fig. 3d where
we fail to detect the two cars under dense foliage. By com-
parison, the SVM method is only able to label vehicle parts
with significant curvature, as flat areas are locally to similar
to background. The AMN method thus provides a signifi-
cant gain, producing a 93.76% overall accuracy, compared
to only 82.23% for the SVM approach.

6. Conclusions

We present an MRF-based method for detection and seg-
mentation of complex objects and object classes from 3D
range data. Our approach has a number of attractive the-
oretical and practical properties. By constraining the class
of MRFs to be solvable by graph-cuts, our models are effi-
ciently learned using a compact quadratic program, and at
run-time, scale up to tens of millions of points and multiple
object classes. The proposed learning formulation effec-
tively and directly learns to exploit a large set of complex
surface and volumetric features, while balancing the spatial
coherence modeled by the MRF.

There are several interesting directions in which our
work can be extended, that address the main limitation of
our work: its reliance on local features to distinguish ob-
jects. First, as our formulation is based on the max-margin
framework underlying SVMs, we can easily incorporate
kernels in order to further boost the expressive power of
the models. We are currently developing appropriate spa-
tial kernels. More importantly, our method relies heavily
on the existence of distinguishing local surface features of
objects. Since we do not model object parts and spatial
relations between them, our method is effective at differ-
entiating between mostly homogeneous objects (for exam-
ple, trees, buildings, limbs), which do not have many parts
that “look” similar locally. For example, it would be dif-
ficult to differentiate between car types, such as sedan vs.
coup, which look alike except for the rear door/trunk. The
challenge of incorporating the object/part hierarchy into the
learning framework is a subject of our future work.
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